Objective: While many factors contribute to aging, changes in calcium homeostasis and calcium related neuronal processes are likely to be important. High intracellular calcium is toxic to cells and alterations in calcium homeostasis are associated with changes in calcium-binding proteins, which confine free Ca(2+). We therefore assayed the expression of the calcium binding proteins calretinin and calbindin in the central auditory nervous system of rats.
Methods: Using antibodies to calretinin and calbindin, we assayed their expression in the cochlear nucleus, superior olivary nucleus, inferior colliculus, medial geniculate body and auditory cortex of young (4 months old) and aged (24 months old) rats.
Results: Calretinin and calbindin staining intensity in neurons of the cochlear nucleus was significantly higher in aged than in young rats (p<0.05) The number and staining intensity of calretinin-positive neurons in the inferior colliculus, and of calbindin-positive neurons in the superior olivary nucleus were greater in aged than in young rats (p<0.05).
Conclusion: These results suggest that auditory processing is altered during aging, which may be due to increased intracellular Ca(2+) concentration, consequently leading to increased immunoreactivity toward calcium-binding proteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2682119 | PMC |
http://dx.doi.org/10.3340/jkns.2009.45.4.231 | DOI Listing |
PLoS Biol
January 2025
Lendület Laboratory of Thalamus Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary.
A single exposure to a stressful event can result in enduring changes in behaviour. Long-term modifications in neuronal networks induced by stress are well explored but the initial steps leading to these alterations remain incompletely understood. In this study, we found that acute stress exposure triggers an immediate increase in the firing activity of calretinin-positive neurons in the paraventricular thalamic nucleus (PVT/CR+) that persists for several days in mice.
View Article and Find Full Text PDFEpilepsy Behav
January 2025
Centro de Estudios Cerebrales, Facultad de Salud, Universidad del Valle, Cali, Colombia. Electronic address:
Traumatic brain injury is a significant risk factor for the development of post-traumatic epilepsy (PTE), posing a major clinical challenge. This review discusses the critical role of GABAergic interneurons and reactive astrogliosis in the pathophysiology of post-traumatic epilepsy, integrating findings from our research group within the traumatic brain injury context with recent literature to highlight the impact of excitation-inhibition imbalance. We analyzed alterations in interneuron populations, specifically subtypes expressing the calcium-binding proteins parvalbumin, calretinin, and calbindin, and their association with an increased risk of epileptogenesis after TBI.
View Article and Find Full Text PDFBrain Struct Funct
January 2025
Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, Bebek, 34342, Istanbul, Turkey.
Theta oscillations of the mammalian amygdala are associated with processing, encoding and retrieval of aversive memories. In the hippocampus, the power of the network theta oscillation is modulated by basal forebrain (BF) GABAergic projections. Here, we combine anatomical and computational approaches to investigate if similar BF projections to the amygdaloid complex provide an analogous modulation of local network activity.
View Article and Find Full Text PDFInt J Dev Neurosci
February 2025
Faculty of Health Sciences, Department of Biomedical Sciences, State University of Rio Grande do Norte, Mossoró, Rio Grande do Norte, Brazil.
Autism spectrum disorder (ASD) is a complex challenge, influenced by genetic and environmental factors. This review focuses on the proteins calbindin (CB), calretinin (CR) and parvalbumin (PV) in the context of ASD, exploring their clinical correlations and providing a deeper understanding of the spectrum. In addition, we seek to understand the role of these proteins in GABAergic regulation and their implication in the pathophysiology of ASD.
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Biological Sciences, Carnegie Mellon University; Pittsburgh 15213 U.S.A.
Somatostatin (SST)-expressing inhibitory neurons are a major class of neocortical γ-amino butyric acid (GABA) neurons, where morphological, electrophysiological, and transcriptomic analyses indicate more than a dozen different subtypes. However, whether this diversity is related to specific roles in cortical computations and plasticity remains unclear. Here we identify learning-dependent, subtype-specific plasticity in layer 2/3 SST neurons of the mouse somatosensory cortex.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!