A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A novel feature selection methodology for automated inspection systems. | LitMetric

A novel feature selection methodology for automated inspection systems.

IEEE Trans Pattern Anal Mach Intell

L3, Electro-Optical Systems, Tempe, AZ 85281, USA.

Published: July 2009

This paper proposes a new feature selection methodology. The methodology is based on the stepwise variable selection procedure, but, instead of using the traditional discriminant metrics such as Wilks' Lambda, it uses an estimation of the misclassification error as the figure of merit to evaluate the introduction of new features. The expected misclassification error rate (MER) is obtained by using the densities of a constructed function of random variables, which is the stochastic representation of the conditional distribution of the quadratic discriminant function estimate. The application of the proposed methodology results in significant savings of computational time in the estimation of classification error over the traditional simulation and cross-validation methods. One of the main advantages of the proposed method is that it provides a direct estimation of the expected misclassification error at the time of feature selection, which provides an immediate assessment of the benefits of introducing an additional feature into an inspection/classification algorithm.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TPAMI.2008.276DOI Listing

Publication Analysis

Top Keywords

feature selection
12
misclassification error
12
selection methodology
8
expected misclassification
8
novel feature
4
selection
4
methodology
4
methodology automated
4
automated inspection
4
inspection systems
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!