Ligand-induced conformational perturbations in androgen receptor (AR) are important in coactivator recruitment and transactivation. However, molecular rearrangements in AR ligand-binding domain (AR-LBD) associated with agonist binding and their kinetic and thermodynamic parameters are poorly understood. We used steady-state second-derivative absorption and emission spectroscopy, pressure and temperature perturbations, and 4,4'-bis-anilinonaphthalene 8-sulfonate (bis-ANS) partitioning to determine the kinetics and thermodynamics of the conformational changes in AR-LBD after dihydrotestosterone (DHT) binding. In presence of DHT, the second-derivative absorption spectrum showed a red shift and a change in peak-to-peak distance. Emission intensity increased upon DHT binding, and center of spectral mass was blue shifted, denoting conformational changes resulting in more hydrophobic environment for tyrosines and tryptophans within a more compact DHT-bound receptor. In pressure perturbation calorimetry, DHT-induced energetic stabilization increased the Gibbs free energy of unfolding to 8.4 +/- 1.3 kcal/mol from 3.5 +/- 1.6 kcal/mol. Bis-ANS partitioning studies revealed that upon DHT binding, AR-LBD underwent biphasic rearrangement with a high activation energy (13.4 kcal/mol). An initial, molten globule-like burst phase (k approximately 30 sec(-1)) with greater solvent accessibility was followed by rearrangement (k approximately 0.01 sec(-1)), leading to a more compact conformation than apo-AR-LBD. Molecular simulations demonstrated unique sensitivity of tyrosine and tryptophan residues during pressure unfolding with rearrangement of residues in the coactivator recruitment surfaces distant from the ligand-binding pocket. In conclusion, DHT binding leads to energetic stabilization of AR-LBD domain and substantial rearrangement of residues distant from the ligand-binding pocket. DHT binding to AR-LBD involves biphasic receptor rearrangement including population of a molten globule-like intermediate state.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2718745 | PMC |
http://dx.doi.org/10.1210/me.2008-0304 | DOI Listing |
Int J Surg
December 2024
Department of Urology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China.
Background: Benign prostatic hyperplasia (BPH) is a common disease in middle-aged and elderly men, and its etiology is not completely clear. Late-onset hypogonadism (LOH) is a relatively common disease in the aging process of men. BPH is often accompanied by varying degrees of LOH, and the pathogenesis and progression of the two diseases are related.
View Article and Find Full Text PDFPlants (Basel)
November 2024
Department of Pharmaceutical Chemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania.
Steroidal 5α-reductase type 2 (S5αR2) is a key enzyme involved in the conversion of testosterone (TST) to dihydrotestosterone (DHT), a crucial process in the development of benign prostatic hyperplasia (BPH). Phytosterols (PSs), natural plant-derived compounds, have been proposed as potential inhibitors of S5αR2, but studies on their efficacy are limited. This study evaluates the inhibitory effects of three PSs (β-sitosterol, stigmasterol, and campesterol) on S5αR2 activity using a combined in vitro and in silico approach.
View Article and Find Full Text PDFJ Steroid Biochem Mol Biol
February 2025
Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Electronic address:
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous environmental pollutants that are highly stable synthetic organofluorine compounds. One congener perfluorooctanoic acid (PFOA) can be detected in nearly all humans and is recognized as an endocrine disrupting chemical (EDC). EDCs disrupt hormone synthesis and metabolism and receptor function.
View Article and Find Full Text PDFIn Silico Pharmacol
November 2024
Department of Biochemistry, Rivers State University, Port Harcourt, Rivers State Nigeria.
Unlabelled: Steroid 5α-reductase (5αR) converts testosterone into dihydrotestosterone (DHT), a potent androgen driving prostate cell proliferation via the androgen receptor (AR). Both 5αR and AR play crucial roles in androgen-mediated disorders, making them key therapeutic targets in drug development. Current treatments target these enzymes individually and often cause significant side effects, highlighting the need for safer alternatives.
View Article and Find Full Text PDFToxicology
December 2024
Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, Basel 4056, Switzerland; Swiss Centre for Applied Human Toxicology and Department of Pharmaceutical Sciences, University of Basel, Missionsstrasse 64, 4055 Basel, Switzerland. Electronic address:
Parabens and UV-filters are frequently used additives in cosmetics and body care products that prolong shelf-life. They are assessed for potential endocrine disrupting properties. Antiandrogenic effects of parabens and benzophenone-type UV-filters by blocking androgen receptor (AR) activity have been reported.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!