Arabidopsis ROS1 belongs to a family of plant 5-methycytosine DNA glycosylases that initiate DNA demethylation through base excision. ROS1 displays the remarkable capacity to excise 5-meC, and to a lesser extent T, while retaining the ability to discriminate effectively against C and U. We found that replacement of the C5-methyl group by halogen substituents greatly decreased excision of the target base. Furthermore, 5-meC was excised more efficiently from mismatches, whereas excision of T only occurred when mispaired with G. These results suggest that ROS1 specificity arises by a combination of selective recognition at the active site and thermodynamic stability of the target base. We also found that ROS1 is a low-turnover catalyst because it binds tightly to the abasic site left after 5-meC removal. This binding leads to a highly distributive behaviour of the enzyme on DNA substrates containing multiple 5-meC residues, and may help to avoid generation of double-strand breaks during processing of bimethylated CG dinucleotides. We conclude that the biochemical properties of ROS1 are consistent with its proposed role in protecting the plant genome from excess methylation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2715244PMC
http://dx.doi.org/10.1093/nar/gkp390DOI Listing

Publication Analysis

Top Keywords

dna demethylation
8
target base
8
ros1
6
dna
5
ros1 5-methylcytosine
4
5-methylcytosine dna
4
dna glycosylase
4
glycosylase slow-turnover
4
slow-turnover catalyst
4
catalyst initiates
4

Similar Publications

Morning-time heart attacks are associated with an ablation in the sleep-time dip in blood pressure, the mechanism of which is unknown. The epigenetic changes are the hallmark of sleep and circadian clock disruption and homocystinuria (HHcy). The homocystinuria causes ablation in the dip in blood pressure during sleep.

View Article and Find Full Text PDF

[Advances in epigenetic regulation of the dioxygenase TET1].

Sheng Wu Gong Cheng Xue Bao

December 2024

College of Veterinary Medicine, Southwest University, Chongqing 402460, China.

Ten-eleven translocation 1 (TET1) protein is an alpha-ketoglutaric acid (α-KG) and Fe-dependent dioxygenase. It plays a role in the active demethylation of DNA by hydroxylation of 5-methyl-cytosine (5-mC) to 5-hydroxymethyl-cytosine (5-hmC). Ten-eleven translocation 1 (TET1) protein is involved in maintaining genome methylation homeostasis and epigenetic regulation.

View Article and Find Full Text PDF

Background: Spinal cord injury (SCI) inflicts a severe burden on patients and lacks effective treatments. Owing to the poor regenerative capabilities of endogenous oligodendrocyte precursor cells (OPCs) following SCI, there is a growing interest in alternative sources, such as human umbilical cord mesenchymal stem cells (HUCMSCs). TET3 is a key DNA demethylase that plays an important role in neural differentiation, but its role in OPC formation is not well understood.

View Article and Find Full Text PDF

[Epigenetic reprogramming, germline and genomic imprinting].

Med Sci (Paris)

December 2024

IGMM, Univ Montpellier, CNRS, Montpellier, France.

The memory of cellular identity is crucial for the correct development of an individual and is maintained throughout life by the epigenome. Chromatin marks, such as DNA methylation and histone modifications, ensure the stability of gene expression programmes over time and through cell division. Loss of these marks can lead to severe pathologies, including cancer and developmental syndromes.

View Article and Find Full Text PDF

ALKBH1: emerging biomarker and therapeutic target for cancer treatment.

Discov Oncol

December 2024

Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.

As neoplastic cells proliferate, disseminate, and infiltrate, they undergo substantial alterations in their epigenetic configuration. Among the pivotal enzymes implicated in this phenomenon is the AlkB family of demethylases, notably AlkB homolog 1 (ALKBH1), which demonstrates conspicuous upregulation across various malignancies. The heightened expression of ALKBH1 renders it a compelling candidate for the development of multifaceted anticancer modalities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!