Alterations in the PIK3CA and PTEN genes were assessed in 40 prostate tumors (radical prostatectomy samples). Genetic analyses in glands of the highest Gleason pattern within each tumor revealed PIK3CA amplification in 13%, PIK3CA mutations in 3%, PTEN homozygous deletion in 13% and PTEN hemizygous deletion in 8% of the cases analyzed. Supporting the view that PTEN and PIK3CA act in the same PI3K signaling pathway, genetic alterations in the PIK3CA and PTEN genes were mutually exclusive, except in one tumor. Overall, 13 of the 40 (33%) prostate tumors had alterations in the PI3K pathway. For cases with genetic alterations, other tumor areas with lower Gleason patterns as well as non-tumorous prostate glands were also analyzed. Of nine tumors with Gleason score 7, five cases contained the same genetic alterations in tumor areas of Gleason patterns 3 and 4, whereas in another four cases, genetic alterations were detected only in tumor areas of Gleason 4 but not Gleason 3 patterns. There were no alterations in non-tumorous glands. These results suggest that genetic alterations in the PI3K pathway are common in prostate cancer, and occur mainly through PIK3CA amplification and PTEN hemizygous or homozygous deletion. Glands of Gleason pattern 3 are genetically heterogeneous, some containing the same genetic alterations observed in glands of Gleason pattern 4.
Download full-text PDF |
Source |
---|
J Neurodev Disord
January 2025
Graduate Neuroscience Program, University of California, Riverside, CA, USA.
Background: Fragile X syndrome (FXS) is a leading known genetic cause of intellectual disability and autism spectrum disorders (ASD)-associated behaviors. A consistent and debilitating phenotype of FXS is auditory hypersensitivity that may lead to delayed language and high anxiety. Consistent with findings in FXS human studies, the mouse model of FXS, the Fmr1 knock out (KO) mouse, shows auditory hypersensitivity and temporal processing deficits.
View Article and Find Full Text PDFBMC Mol Cell Biol
January 2025
Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK.
Background: During the latter stages of their development, mammalian oocytes under dramatic chromatin reconfiguration, transitioning from a non-surrounded nucleolus (NSN) to a surrounded nucleolus (SN) stage, and concomitant transcriptional silencing. Although the NSN-SN transition is known to be essential for developmental competence of the oocyte, less is known about the accompanying molecular changes. Here we examine the changes in the transcriptome and DNA methylation during the NSN to SN transition in mouse oocytes.
View Article and Find Full Text PDFNat Cardiovasc Res
January 2025
Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK.
Arrhythmias are a hallmark of myocardial infarction (MI) and increase patient mortality. How insult to the cardiac conduction system causes arrhythmias following MI is poorly understood. Here, we demonstrate conduction system restoration during neonatal mouse heart regeneration versus pathological remodeling at non-regenerative stages.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
Background: Epilepsy has a genetic predisposition, yet causal factors and the dynamics of the immune environment in epilepsy are not fully understood.
Methods: We analyzed peripheral blood samples from epilepsy patients, identifying key genes associated with epilepsy risk through Mendelian randomization, using eQTLGen and genome-wide association studies. The peripheral immune environment's composition in epilepsy was explored using CIBERSORT.
Nat Genet
January 2025
Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.
Understanding the molecular landscape of nonmuscle-invasive bladder cancer (NMIBC) is essential to improve risk assessment and treatment regimens. We performed a comprehensive genomic analysis of patients with NMIBC using whole-exome sequencing (n = 438), shallow whole-genome sequencing (n = 362) and total RNA sequencing (n = 414). A large genomic variation within NMIBC was observed and correlated with different molecular subtypes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!