It is generally accepted that force enhancement in skeletal muscles increases with increasing stretch magnitudes. However, this property has not been tested across supra-physiological stretch magnitudes and different muscle lengths, thus it is not known whether this is a generic property of skeletal muscle, or merely a property that holds for small stretch magnitudes within the physiological range. Six cat soleus muscles were actively stretched with magnitudes varying from 3 to 24 mm at three different parts of the force-length relationship to test the hypothesis that force enhancement increases with increasing stretch magnitude, independent of muscle length. Residual force enhancement increased consistently with stretch amplitudes on the descending limb of the force-length relationship up to a threshold value, after which it reached a plateau. Force enhancement did not increase with stretch amplitude on the ascending limb of the force-length relationship. Passive force enhancement was observed for all test conditions, and paralleled the behavior of the residual force enhancement. Force enhancement increased with stretch magnitude when stretching occurred at lengths where there was natural passive force within the muscle. These results suggest that force enhancement does not increase unconditionally with increasing stretch magnitude, as is generally accepted, and that increasing force enhancement with stretch appears to be tightly linked to that part of the force-length relationship where there is naturally occurring passive force.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiomech.2009.03.046 | DOI Listing |
Medicine (Baltimore)
January 2025
Second Hospital of the Air Force Medical University, Xi 'an, China.
Background: This study investigates the therapeutic efficacy of dynamic neuromuscular stabilization (DNS) technology paired with Kinesio Taping in patients with persistent nonspecific low back pain, as well as the effect on neuromuscular function and pain self-efficacy.
Methods: A randomized controlled clinical study was conducted to collect clinical data on DNS combined with KT for the treatment of chronic nonspecific low back pain from November 2023 to April 2024. The inclusion criteria were patients with chronic nonspecific lower back pain, aged between 18 and 30 years old, and without serious underlying medical conditions, such as cardiac disease, hypertension, and diabetes.
PLoS One
January 2025
School of Architectural Engineering, Shenzhen Polytechnic University, Shenzhen, China.
In the decision-making process for investing in heritage buildings (HBs), various factors such as costs, interests, and tenancy terms influence investors decisions. Understanding the motivations of these investors can facilitate the involvement of social forces with diverse interests in adaptive reuse projects. This paper examines the primary barriers to revitalizing heritage buildings through adaptive reuse decision-making.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Department of Psychology, Princeton University, Princeton, NJ 08540.
Traditional gendered arrangements-norms, roles, prejudices, and hierarchies-shape every human life. Associated harms are primarily framed as women's issues due to more severe consequences women face. Yet, gendered arrangements also shape 's relationships, career paths, and health.
View Article and Find Full Text PDFJ Sci Food Agric
January 2025
School of Food Science and Engineering, Hainan University, Haikou, People's Republic of China.
Background: This study aimed to elucidate the transport mechanism of lycopene-loaded nanomicelles to improve intestinal absorption of lycopene. The interactive mechanism between lycopene and nanomicelles was investigated through isothermal titration calorimetry (ITC). The cytotoxicity, cellular uptake, endocytosis, and intracellular transport pathways of lycopene-loaded nanomicelles were investigated using the Caco-2 cell model.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Clinical Laboratory of Sir Run Run Shaw Hospital, College of Biosystems Engineering and Food Science, Zhejiang University School of Medicine, Hangzhou 310058, People's Republic of China.
The escalating growth in computing power and the advent of quantum computing present a critical threat to the security of modern cryptography. Two-factor authentication strategies can effectively resist brute-force attacks to improve the security of access control. Herein, we proposed a two-factor and two-authentication entity strategy based on the trans-cleavage activity of CRISPR-Cas and the "dual-step" sequence-specific cleavage of Argonaute.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!