Membrane injury by pore-forming proteins.

Curr Opin Cell Biol

Ecole Polytechnique Fédérale de Lausanne, Global Health Institute, Lausanne, Switzerland.

Published: August 2009

AI Article Synopsis

Article Abstract

The plasma membrane defines the boundary of every living cell, and its integrity is essential for life. The plasma membrane may, however, be challenged by mechanical stress or pore-forming proteins produced by the organism itself or invading pathogens. We will here review recent findings about pore-forming proteins from different organisms, highlighting their structural and functional similarities, and describe the mechanisms that lead to membrane repair, since remarkably, cells can repair breaches in their plasma membrane of up to 10,000 microm(2).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ceb.2009.04.003DOI Listing

Publication Analysis

Top Keywords

pore-forming proteins
12
plasma membrane
12
membrane
5
membrane injury
4
injury pore-forming
4
proteins plasma
4
membrane defines
4
defines boundary
4
boundary living
4
living cell
4

Similar Publications

Development of a StIW111C-based bioresponsive pore-forming conjugate for permeabilizing the endosomal membrane.

Int J Biol Macromol

January 2025

Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25(th) Street, corner to J Street. Square of Revolution, Havana 10400. Cuba; NanoCancer, Molecular Immunology Center (CIM), 216 Street, corner to 15 Street, Playa, Havana 11600, Cuba. Electronic address:

Gene expression manipulation is pivotal in therapeutic approaches for various diseases. Non-viral delivery systems present a safer alternative to viral vectors, with reduced immunogenicity and toxicity. However, their effectiveness in promoting endosomal escape, a crucial step in gene transfer, remains limited.

View Article and Find Full Text PDF

Mutagenesis and analysis of contrasting wheat lines do not support a role for PFT in Fusarium head blight resistance.

Nat Genet

January 2025

The Applied Plant Genomics Laboratory of Crop Genomics and Bioinformatics Centre and State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China.

Ambiguity about whether the histidine-rich calcium-binding protein-coding gene (His) or the pore-forming toxin-like gene (PFT) or both are responsible for Fusarium head blight (FHB) resistance conferred by the Fhb1 quantitative trait locus hinders progress toward elucidating Fhb1 resistance mechanisms. Here, with a series of developed lines with or without PFT but all possessing His and five His-carrying PFT mutant lines created via gene editing, we show that PFT does not confer FHB resistance and that the His resistance effect does not require PFT in the tested conditions. We also show that PFT mutations are not associated with morphological and phenological characteristics that often affect FHB severity.

View Article and Find Full Text PDF

Podocytes express large-conductance Ca-activated K channels (BK channels) and at least two different pore-forming KCa1.1 subunit C-terminal splice variants, known as VEDEC and EMVYR, along with auxiliary β and γ subunits. Podocyte KCa1.

View Article and Find Full Text PDF

We present an in-depth electrophysiological analysis of Tse5, a pore-forming toxin (PFT) delivered by the type VI secretion system (T6SS) of Pseudomonas aeruginosa. The T6SS is a sophisticated bacterial secretion system that injects toxic effector proteins into competing bacteria or host cells, providing a competitive advantage by disabling other microbes and modulating their environment. Our findings highlight the dependency of Tse5 insertion on membrane charge and electrolyte concentration, suggesting an in vivo effect from the periplasmic space.

View Article and Find Full Text PDF

Calcium and integrin-binding protein 2 (CIB2) and CIB3 bind to transmembrane channel-like 1 (TMC1) and TMC2, the pore-forming subunits of the inner-ear mechano-electrical transduction (MET) apparatus. These interactions have been proposed to be functionally relevant across mechanosensory organs and vertebrate species. Here, we show that both CIB2 and CIB3 can form heteromeric complexes with TMC1 and TMC2 and are integral for MET function in mouse cochlea and vestibular end organs as well as in zebrafish inner ear and lateral line.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!