The resistance of single-walled carbon nanotube (SWNT) bundles has been investigated by two-terminal measurements. We find that the time dependence of resistance (dR/dt) exhibits different behaviors at different currents. At low currents, a positive dR/dt is observed. However, dR/dt shows a negative sign when the applied current exceeds a critical current (Ic). Ic coincides with the current when the sample begins to emit light. The variation of dR/dt can be interpreted as the thermal effects owing to Joule heating in the SWNTs. Our lighting SWNTs sample has a small change in resistance and exhibits high stability.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2009.c156DOI Listing

Publication Analysis

Top Keywords

single-walled carbon
8
novel resistance
4
resistance behavior
4
behavior single-walled
4
carbon nanotubes
4
nanotubes large
4
large currents
4
currents resistance
4
resistance single-walled
4
carbon nanotube
4

Similar Publications

In this work, we describe a computational tool designed to determine the local dielectric constants (ε) of charge-neutral heterogeneous systems by analyzing dipole moment fluctuations from molecular dynamics (MD) trajectories. Unlike conventional methods, our tool can calculate dielectric constants for dynamically evolving selections of molecules within a defined region of space, rather than for fixed sets of molecules. We validated our approach by computing the dielectric constants of TIP3P water nanospheres, achieving results consistent with literature values for bulk water.

View Article and Find Full Text PDF

Constructing conical helices inside carbon nanocones.

Phys Chem Chem Phys

January 2025

School of Mechanical & Vehicle Engineering, Linyi University, Linyi, Shandong 276000, China.

Molecular dynamics simulations demonstrate that regular conical helices of poly(-phenylene) (PPP) chains can be constructed inside the confined space of single-walled carbon nanocones (CNCs). The translocation displacement of the PPP chain combined with the change of the system total potential energy including each energy component and structural parameters of the formed conical helix is discussed to deeply explore the microstructure evolution, driving forces and dynamic mechanisms. In addition, the influence of chain length, cone angle, temperature, chain number, linked position of benzene rings and the form of Lennard-Jones potential on the helical encapsulation is further studied.

View Article and Find Full Text PDF

In silico methods are increasingly important in predicting the ecotoxicity of engineered nanomaterials (ENMs), encompassing both individual and mixture toxicity predictions. It is widely recognized that ENMs trigger oxidative stress effects by generating intracellular reactive oxygen species (ROS), serving as a key mechanism in their cytotoxicity studies. However, existing in silico methods still face significant challenges in predicting the oxidative stress effects induced by ENMs.

View Article and Find Full Text PDF

Semiconducting single-walled carbon nanotubes (SWCNTs) are significantly attractive for thermoelectric generators (TEGs), which convert thermal energy into electricity via the Seebeck effect. This is because the characteristics of semiconducting SWCNTs are perfectly suited for TEGs as self-contained power sources for sensors on the Internet of Things (IoT). However, the thermoelectric performances of the SWCNTs should be further improved by using the power sources.

View Article and Find Full Text PDF

Single-walled carbon nanotubes (SWNTs) exhibit distinct electronic properties, categorized as metallic or semiconducting, determined by their chirality. The precise and selective separation of these electronic types is pivotal for advancing nanotechnology applications. While conventional gel chromatography has been widely employed for large-scale separations, its limitations in addressing microscale dynamics and electronic-type differentiation have persisted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!