The mesoporous NiO-SDC was synthesized using a cationic surfactant (cetyl-trimethylammonium bromide; CTAB) for obtaining wide triple-phase boundary (TPB) in solid oxide fuel cells (SOFCs). The microstructure of mesoporous NiO-SDC was characterized by XRD, SEM, BET, and HRTEM and the results showed that the mesoporous NiO-SDC with 6.3 nm pores could be obtained. After calcined at 600 degrees C, the surface area of NiO-SDC was 206 m2/g, which was sufficiently high for providing large TPB in SOFC anode. In addition, FT-IR measurements revealed that Ni(OH)2 and SDC were incorporated with amine group of CTAB.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2009.c092 | DOI Listing |
J Nanosci Nanotechnol
August 2014
In order to prepare anode material for low-temperature solid oxide fuel cells (SOFCs), the mesoporous NiO-SDC was synthesized using a cationic surfactant (cetyltrimethyl-ammonium bromide; CTAB) for obtaining wide triple-phase boundary (TPB). In addition, Ni-SDC anode-supported SOFC single cells with YSZ electrolyte and LSM cathode were fabricated and the performance of single cells was evaluated at 600 °C. The microstructure of NiO-SDC was characterized by XRD, EDX, SEM, and BET, and the results showed that the mesoporous NiO-SDC with 10 nm pores could be obtained.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
February 2009
Department of Chemical and Bio Engineering, Kyungwon University, Seongnam, 461-701, Korea.
The mesoporous NiO-SDC was synthesized using a cationic surfactant (cetyl-trimethylammonium bromide; CTAB) for obtaining wide triple-phase boundary (TPB) in solid oxide fuel cells (SOFCs). The microstructure of mesoporous NiO-SDC was characterized by XRD, SEM, BET, and HRTEM and the results showed that the mesoporous NiO-SDC with 6.3 nm pores could be obtained.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!