Unlabelled: The inhibition of heat shock protein 90 (Hsp90) has emerged as a promising antineoplastic strategy in diverse human malignancies. Hsp90 has been predicted to be involved in hepatocellular carcinoma (HCC) development; however, its role in hepatocarcinogenesis remains elusive. Using chemically distinctive Hsp90 inhibitors, we show that Hsp90 capacitates the aberrant expression and activity of crucial hepatocarcinogenesis-driving factors (e.g., insulin-like growth factor receptor 1, hepatocyte growth factor receptor, protein kinase B, v-raf-1 murine leukemia viral oncogene homolog 1, and cyclin-dependent kinase 4). In vitro, Hsp90 inhibition with both geldanamycin analogs (17-allylamino-17-desmethoxygeldanamycin (17-AAG) and 17-dimethylaminoethylamino-17-desmethoxygeldanamycin (17-DMAG)) and the non-quinone compound 8-(6-iodobenzo[d][1,3]dioxol-5-ylthio)-9-(3-(isopropylamino)propyl)-9H-purin-6-amine (PU-H71) reduced the viability of various HCC cell lines, induced the simultaneous degradation of numerous hepatocarcinogenic factors, and caused substantial cell cycle arrest and apoptosis. In contrast, nontumorigenic hepatocytes were less susceptible to Hsp90 inhibition. Because conventional geldanamycin-derivate Hsp90 inhibitors induce dose-limiting liver toxicity, we tested whether novel Hsp90 inhibitors lacking the benzoquinone moiety, which has been deemed responsible for hepatotoxicity, can elicit antineoplastic activity without causing significant liver damage. In HCC xenograft mouse models, PU-H71 was retained in tumors at pharmacologically relevant concentrations while being rapidly cleared from nontumorous liver. PU-H71 showed potent and prolonged in vivo Hsp90 inhibitory activity and reduced tumor growth without causing toxicity.
Conclusion: Hsp90 constitutes a promising therapeutic target in HCC. Non-quinone Hsp90 inhibitors exhibit tumor-specific accumulation and exert potent antineoplastic activity without causing significant hepatotoxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/hep.22912 | DOI Listing |
Life Sci
January 2025
Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China. Electronic address:
As a common side effect of radiotherapy, radiation-induced intestinal injury (RIII) greatly affects the prognosis of patients and the efficacy of radiotherapy. Current therapeutic strategies for RIII are still very limited. Thus, the identification of effective radioprotective agents is of great importance.
View Article and Find Full Text PDFCurr Cancer Drug Targets
January 2025
Human Genetics Laboratory, Institute of Natural Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, 37130-001, MG, Brazil.
Histone Deacetylase 6 (HDAC6) is an intriguing therapeutic target in cancer re-search, distinguished as the only HDAC family member predominantly located in the cyto-plasm. HDAC6 features two catalytic domains and a unique ubiquitin-binding domain, which sets it apart from other HDACs. Beyond its role in histone deacetylation, HDAC6 targets vari-ous nonhistone substrates, such as α-tubulin, cortactin, Heat Shock Protein 90 (HSP90), and Heat Shock Factor 1 (HSF1).
View Article and Find Full Text PDFBreast Cancer Res Treat
January 2025
Rafet Kayış Faculty of Engineering, Department of Genetics and Bioengineering, Alanya Alaaddin Keykubat University, Antalya, Turkey.
Purpose: The incidence of breast cancer has been increasing in recent years, and monotherapy approaches are not sufficient alone in the treatment of breast cancer. In the combined therapy approach, combining two or three different agents in lower doses can mitigate the side effects on living cells and tissues caused by high doses of chemical agents used alone. ABT-263 (navitoclax), a clinically tested Bcl-2 family protein inhibitor, has shown limited success in clinical trials due to the development of resistance to monotherapy in breast cancer cells.
View Article and Find Full Text PDFMolecules
December 2024
Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche "STEBICEF", University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy.
Breast cancer remains one of the most prevalent and lethal malignancies in women, particularly the estrogen receptor-positive (ER+) subtype, which accounts for approximately 70% of cases. Traditional endocrine therapies, including aromatase inhibitors, selective estrogen receptor degraders/antagonists (SERDs), and selective estrogen receptor modulators (SERMs), have improved outcomes for metastatic ER+ breast cancer. However, resistance to these agents presents a significant challenge.
View Article and Find Full Text PDFNeuromolecular Med
January 2025
Department of Neurology, Second Affiliated Hospital of Army Medical University (Xinqiao Hospital), Chongqing, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!