Background: Malignant cells show increased glucose uptake in vitro and in vivo, which is thought to be mediated by glucose transporters. In this study, we investigated the effect of plasmid-derived antisense RNA against the Glut-l gene on proliferation and glucose uptake in laryngeal carcinoma Hep-2 cells.

Methods: The expression plasmids pcDNA3.1(+)-Glut-1 and pcDNA3.1(+)-anti Glut-1 were constructed. The MTT method was used to assess cell growth inhibition. The expression of Glut-1 mRNA and protein was detected by reverse transcriptase-polymerase chain reaction and Western blotting, respectively.

Results: After transfection, Glut-1 AS clearly inhibited glucose uptake and cell growth in Hep-2 cells, and we observed a decrease in the expression of Glut-1 mRNA and protein in Hep-2 cells.

Conclusions: Glut-1 AS decreases glucose uptake and inhibits the proliferation of Hep-2 cells.

Download full-text PDF

Source
http://dx.doi.org/10.1002/hed.21137DOI Listing

Publication Analysis

Top Keywords

glucose uptake
20
proliferation glucose
8
laryngeal carcinoma
8
cell growth
8
expression glut-1
8
glut-1 mrna
8
mrna protein
8
hep-2 cells
8
glucose
7
uptake
5

Similar Publications

D-ribose-5-phosphate inactivates YAP and functions as a metabolic checkpoint.

J Hematol Oncol

January 2025

Department of Radiation Oncology, Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.

Background: Targeting glucose uptake by glucose transporter (GLUT) inhibitors is a therapeutic opportunity, but efforts on GLUT inhibitors have not been successful in the clinic and the underlying mechanism remains unclear. We aim to identify the key metabolic changes responsible for cancer cell survival from glucose limitation and elucidate its mechanism.

Methods: The level of phosphorylated YAP was analyzed with Western blotting and Phos-tag immunoblotting.

View Article and Find Full Text PDF

Metabolic reprogramming, malignant transformation and metastasis: lessons from chronic lymphocytic leukaemia and prostate cancer.

Cancer Lett

January 2025

Clinical and Health Sciences, University of South Australia, Adelaide, Australia; Department of Histopathology, Trinity College Dublin, St. James's Hospital, Dublin, Ireland. Electronic address:

Metabolic reprogramming is a hallmark of cancer, crucial for malignant transformation and metastasis. Chronic lymphocytic leukaemia (CLL) and prostate cancer exhibit similar metabolic adaptations, particularly in glucose and lipid metabolism. Understanding this metabolic plasticity is crucial for identifying mechanisms contributing to metastasis.

View Article and Find Full Text PDF

Dual-template epitope imprinted nanoparticles for anti-glycolytic tumor-targeted treatment.

J Colloid Interface Sci

December 2024

State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China; National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. Electronic address:

Glycolysis provides tumors with abundant nutrients through glucose (Glu) metabolism. As a therapeutic target, precise targeting and effective inhibition of the glycolysis process remains a major challenge in anti-metabolic therapy. In this study, a novel dual-template molecularly imprinted polymer (D-MIP), capable of specifically recognizing glucose transporter member 1 (GLUT1) and hexokinase-2 (HK2) was prepared for anti-glycolytic tumor therapy.

View Article and Find Full Text PDF

Effects of in vitro simulated digestion on the hypoglycaemic capacity of wheat bran-soluble dietary fibre.

Biochem Biophys Res Commun

December 2024

College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China. Electronic address:

Wheat bran-soluble dietary fibre (WB-SDF) is known for its hypoglycaemic properties and its potential to control postprandial blood glucose levels in individuals with hyperglycaemia. However, the digestive process may alter its glucose-lowering potential. This study investigated the effects of in vitro simulated digestion on the hypoglycaemic efficacy of WB-SDF.

View Article and Find Full Text PDF

APOM Modulates the Glycolysis Process in Liver Cancer Cells by Controlling the Expression and Activity of HK2 via the Notch Pathway.

Biochem Genet

January 2025

Anhui Province Key Laboratory of Basic Research and Transformation of Age-Related Diseases, Wannan Medical College, Wuhu, 241002, Anhui, P. R. China.

The metabolic pathway of aerobic glycolysis in tumor cells has garnered significant attention in tumor research because of its high activation in cancer cells. Previous research conducted by our team has demonstrated that Apolipoprotein M (APOM) exhibits potential as a factor against liver cancer. However, further investigations are needed to elucidate the precise approach and mechanism that are involved in this process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!