beta-Amyloid (A beta) is a key component of senile plaques, neuropathological hallmarks of Alzheimer's disease (AD) and has been reported to induce cell death via oxidative stress. This study investigated the protective effects of Triticum aestivum L. (TAL) on A beta-induced apoptosis in SH-SY5Y cells and cognitive dysfunctions in Sprague-Dawley (SD) rats. Cells treated with A beta exhibited decreased viability and apoptotic features, such as DNA fragmentation, alterations in mitochondria and an increased Bax/Bcl-2 ratio, which were attenuated by TAL extract (TALE) pretreatment. To elucidate the neuroprotective mechanisms of TALE, the study examined A beta-induced oxidative stress and cellular defense. TALE pretreatment suppressed A beta-increased intracellular accumulation of reactive oxygen species (ROS) via up-regulation of glutathione, an essential endogenous antioxidant. To further verify the effect of TALE on memory impairments, A beta or scopolamine was injected in SD rats and a water maze task conducted as a spatial memory test. A beta or scopolamine treatment increased the time taken to find the platform during training trials, which was decreased by TALE pretreatment. Furthermore, one of the active components of TALE, total dietary fiber also effectively inhibited A beta-induced cytotoxicity and scopolamine-caused memory deficits. These results suggest that TALE may have preventive and/or therapeutic potential in the management of AD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ptr.2871 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!