Background: The mass of pancreatic beta-cells varies according to increases in insulin demand. It is hypothesized that functionally heterogeneous beta-cell subpopulations take part in this process. Here we characterized two functionally distinct groups of beta-cells and investigated their physiological relevance in increased insulin demand conditions in rats.

Methods: Two rat beta-cell populations were sorted by FACS according to their PSA-NCAM surface expression, i.e. beta(high) and beta(low)-cells. Insulin release, Ca(2+) movements, ATP and cAMP contents in response to various secretagogues were analyzed. Gene expression profiles and exocytosis machinery were also investigated. In a second part, beta(high) and beta(low)-cell distribution and functionality were investigated in animal models with decreased or increased beta-cell function: the Zucker Diabetic Fatty rat and the 48 h glucose-infused rat.

Results: We show that beta-cells are heterogeneous for PSA-NCAM in rat pancreas. Unlike beta(low)-cells, beta(high)-cells express functional beta-cell markers and are highly responsive to various insulin secretagogues. Whereas beta(low)-cells represent the main population in diabetic pancreas, an increase in beta(high)-cells is associated with gain of function that follows sustained glucose overload.

Conclusion: Our data show that a functional heterogeneity of beta-cells, assessed by PSA-NCAM surface expression, exists in vivo. These findings pinpoint new target populations involved in endocrine pancreas plasticity and in beta-cell defects in type 2 diabetes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2679208PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0005555PLOS

Publication Analysis

Top Keywords

functional beta-cell
8
insulin demand
8
psa-ncam surface
8
surface expression
8
beta-cell
6
exploring functional
4
beta-cell heterogeneity
4
heterogeneity vivo
4
psa-ncam
4
vivo psa-ncam
4

Similar Publications

WNT4 promotes the symmetric fission of crypt in radiation-induced intestinal epithelial regeneration.

Cell Mol Biol Lett

December 2024

Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.

Background: Radiotherapy for pelvic malignant tumors inevitably causes intestinal tissue damage. The regeneration of intestinal epithelium after radiation injury relies mainly on crypt fission. However, little is known about the regulatory mechanisms of crypt fission events.

View Article and Find Full Text PDF

Recapitulating the potential contribution of protein S-palmitoylation in cancer.

Cancer Metastasis Rev

December 2024

Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, 453552, Simrol, Madhya Pradesh, India.

Protein S-palmitoylation is a reversible form of protein lipidation in which the formation of a thioester bond occurs between a cysteine (Cys) residue of a protein and a 16-carbon fatty acid chain. This modification is catalyzed by a family of palmitoyl acyl transferases, the DHHC enzymes, so called because of their Asp-His-His-Cys (DHHC) catalytic motif. Deregulation of DHHC enzymes has been linked to various diseases, including cancer and infections.

View Article and Find Full Text PDF

In cells, the term "cellular aging" represents a collection of biological changes that can precede the proliferative senescence states. Cells more resistant to proliferative senescence, such as the ones found in the basal layer of the epidermis, may also exhibit these aging patterns. Therefore, cellular aging events could be induced by endogenous signals named here as cellular aging triggers (CATs) components.

View Article and Find Full Text PDF

Objectives: To explore the role of the cGAS-STING signaling pathway in the therapeutic mechanism of Formula (LXJDHYF) for acute-on-chronic liver failure (ACLF) in mice.

Methods: Thirty C57BL/6 mice were randomly divided into blank control group, model group, low- and high-dose LXJDHYF groups, and H151 (a specific cGAS-STING pathway inhibitor) group (6). In all but the control group, the mice were treated with CCl to induce liver cirrhosis followed by intraperitoneal injections of lipopolysaccharide and D-amino galactose to establish mouse models of ACLF.

View Article and Find Full Text PDF

Objectives: To investigate the inhibitory effect of Danshen Injection on endothelial-mesenchymal transition (EndMT) induced by peritoneal dialysis fluid in HMrSV5 cells and the role of the TGF‑β/Smad signaling pathway in mediating this effect.

Methods: HMrSV5 cells cultured in 40% peritoneal dialysis solution for 72 h to induce EndMT were treated with 0.05%, 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!