Download full-text PDF

Source
http://dx.doi.org/10.4161/cbt.8.14.8756DOI Listing

Publication Analysis

Top Keywords

epigenetic modulation
4
modulation attacking
4
attacking hedgehog
4
hedgehog pathway
4
pathway synergistic
4
synergistic therapeutic
4
therapeutic targets
4
targets pancreatic
4
pancreatic cancer
4
epigenetic
1

Similar Publications

DDO1002, an NRF2-KEAP1 inhibitor, improves hematopoietic stem cell aging and stress response.

Life Med

December 2024

Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China.

Oxidative stress diminishes the functionality of hematopoietic stem cells (HSCs) as age advances, with heightened reactive oxygen species (ROS) levels exacerbating DNA damage, cellular senescence, and hematopoietic impairment. DDO1002, a potent inhibitor of the NRF2-KEAP1 pathway, modulates the expression of antioxidant genes. Yet, the extent to which it mitigates hematopoietic decline post-total body irradiation (TBI) or in the context of aging remains to be elucidated.

View Article and Find Full Text PDF

Oxidative stress and dysregulated long noncoding RNAs in the pathogenesis of Parkinson's disease.

Biol Res

January 2025

Department of Neurology, Fourth Affiliated Hospital of China Medical University, No.4 Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning, China.

Parkinson's disease (PD) is a progressive age-related neurodegenerative disease whose annual incidence is increasing as populations continue to age. Although its pathogenesis has not been fully elucidated, oxidative stress has been shown to play an important role in promoting the occurrence and development of the disease. Long noncoding RNAs (lncRNAs), which are more than 200 nucleotides in length, are also involved in the pathogenesis of PD at the transcriptional level via epigenetic regulation, or at the post-transcriptional level by participating in physiological processes, including aggregation of the α-synuclein, mitochondrial dysfunction, oxidative stress, calcium stabilization, and neuroinflammation.

View Article and Find Full Text PDF

Multiplexed spatial mapping of chromatin features, transcriptome and proteins in tissues.

Nat Methods

January 2025

Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

The phenotypic and functional states of cells are modulated by a complex interactive molecular hierarchy of multiple omics layers, involving the genome, epigenome, transcriptome, proteome and metabolome. Spatial omics approaches have enabled the study of these layers in tissue context but are often limited to one or two modalities, offering an incomplete view of cellular identity. Here we present spatial-Mux-seq, a multimodal spatial technology that allows simultaneous profiling of five different modalities: two histone modifications, chromatin accessibility, whole transcriptome and a panel of proteins at tissue scale and cellular level in a spatially resolved manner.

View Article and Find Full Text PDF

Social cognition, which ranges from recognizing social cues to intricate inferential reasoning, is influenced by environmental factors and epigenetic mechanisms. Notably, methylation variations in stress-related genes like brain-derived neurotrophic factor (BDNF) and the oxytocin receptor (OXTR) are linked to distinct social cognitive functions and exhibit sex-specific differences. This study investigates how these methylation differences affect social cognition across sexes, focusing on both perceptual and inferential cognitive levels.

View Article and Find Full Text PDF

MCT1 lactate transporter blockade re-invigorates anti-tumor immunity through metabolic rewiring of dendritic cells in melanoma.

Nat Commun

January 2025

Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Univ. Grenoble Alpes, Grenoble, France.

Dendritic cells (DC) are key players in antitumor immune responses. Tumors exploit their plasticity to escape immune control; their aberrant surface carbohydrate patterns (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!