Using the whole-cell patch-clamp technique, the influence of selected multidrug resistance modulators, both plant-derived compounds and derivatives on the activity of voltage-gated potassium channels Kv1.3 was investigated. Twelve compounds with phenolic and terpenic structures were tested: the stilbenes piceatannol (1) and its tetramethoxy (2) and tetracetoxy (3) derivatives, the flavonoids naringenin (4) and its methylated derivatives: naringenin-4',7-dimethylether (5) and naringenin-7-methylether (6), and aromadendrin (7), the coumarins esculetin (8) and scopoletin (9) and ent-abietane diterpenes, helioscopinolide B (10) and its 3beta-acetoxy derivative (11) and helioscopinolide E (12). The studies were performed on a model system with Kv1.3 channels endogenously expressed in human T lymphocytes. Obtained data provide evidence that compounds 2, 5 and 6 applied at 30 microM inhibited the amplitude of recorded currents to 31%, 4% and 29% of its control value, respectively. On the other hand, compounds 3, 4, 7-12 (at 30 microM) and compound 1 (at 40 microM) did not affect significantly the channel activity. These results indicate that some methoxy-derivatives of the tested compounds are effective inhibitors of Kv1.3 channels. Since the inhibition of Kv1.3 channels may inhibit the proliferation of prostate, breast and colon cancer cells expressing these channels, the channel inhibitors may exert an antiproliferative action. This action combined with a simultaneous modulation of the multidrug resistance may be significant for a potential application of these compounds in cancer chemotherapy.

Download full-text PDF

Source

Publication Analysis

Top Keywords

kv13 channels
12
voltage-gated potassium
8
potassium channels
8
multidrug resistance
8
channels
6
compounds
6
kv13
5
influence multidrug
4
multidrug transporter
4
transporter inhibitors
4

Similar Publications

A sex-dependent role of Kv1.3 channels from macrophages in metabolic syndrome.

Front Physiol

November 2024

Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Valladolid, Spain.

Article Synopsis
  • Coronary artery disease (CAD) is a leading cause of death and disability worldwide, particularly affecting patients with type 2 diabetes (T2DM) who experience worse outcomes due to inflammation and endothelial dysfunction.* ! -
  • The study investigates the role of K1.3 channel blockers in reducing intimal hyperplasia and improving metabolic dysfunction in a T2DM mouse model, focusing on the macrophage K1.3 channels as potential therapeutic targets.* ! -
  • Results indicate that K1.3 channel expression is increased in macrophages from T2DM mice, especially in females, but these channels primarily influence cell migration rather than metabolic function or phagocytosis.* !
View Article and Find Full Text PDF

Background: Changes in K channel expression/function are associated with disruption of vascular reactivity in several pathological conditions, including hypertension, diabetes, and atherosclerosis. Gasotransmitters achieve part of their effects in the organism by regulating ion channels, especially K channels. Their involvement in hydrogen sulfide (HS)-mediated vasorelaxation is still unclear, and data about human vessels are limited.

View Article and Find Full Text PDF

Novel insights into the modulation of the voltage-gated potassium channel K1.3 activation gating by membrane ceramides.

J Lipid Res

August 2024

Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary. Electronic address:

Membrane lipids extensively modulate the activation gating of voltage-gated potassium channels (K), however, much less is known about the mechanisms of ceramide and glucosylceramide actions including which structural element is the main intramolecular target and whether there is any contribution of indirect, membrane biophysics-related mechanisms to their actions. We used two-electrode voltage-clamp fluorometry capable of recording currents and fluorescence signals to simultaneously monitor movements of the pore domain (PD) and the voltage sensor domain (VSD) of the K1.3 ion channel after attaching an MTS-TAMRA fluorophore to a cysteine introduced into the extracellular S3-S4 loop of the VSD.

View Article and Find Full Text PDF

K1.3-induced hyperpolarization is required for efficient Kaposi's sarcoma-associated herpesvirus lytic replication.

Sci Signal

July 2024

School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, UK.

Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic herpesvirus that is linked directly to the development of Kaposi's sarcoma. KSHV establishes a latent infection in B cells, which can be reactivated to initiate lytic replication, producing infectious virions. Using pharmacological and genetic silencing approaches, we showed that the voltage-gated K channel K1.

View Article and Find Full Text PDF

Regulation of T Lymphocyte Functions through Calcium Signaling Modulation by Nootkatone.

Int J Mol Sci

May 2024

Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang 10326, Gyeonggi-do, Republic of Korea.

Recent advancements in understanding the intricate molecular mechanisms underlying immunological responses have underscored the critical involvement of ion channels in regulating calcium influx, particularly in inflammation. Nootkatone, a natural sesquiterpenoid found in and various citrus species, has gained attention for its diverse pharmacological properties, including anti-inflammatory effects. This study aimed to elucidate the potential of nootkatone in modulating ion channels associated with calcium signaling, particularly CRAC, K1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!