In the adult CNS, neurogenesis takes place in special niches. It is not understood how these niches are formed during development and how they are maintained. In contrast to mammals, stem cell niches are abundant in zebrafish and also found in other parts of the brain than telencephalon. To understand common characteristics of neural stem cell niches in vertebrates, we studied the origin and architecture of a previously unknown stem cell niche using transgenic lines, in vivo imaging, and marker analysis. We show that bipotent stem cells are maintained in a distinct niche in the adult zebrafish cerebellum. Remarkably, the stem cells are not typical glia but instead retain neuroepithelial characteristics. The cerebellar stem cell niche is generated by the coordinated displacement of ventricle and rhombic lip progenitors in a two-step process involving morphogenetic movements and tissue growth. Importantly, the niche and its stem cells still remain in ventricular contact through a previously unknown derivative of the ventricle. Factors propagated in the ventricle are thought to be important regulators of stem cell activity. To test the requirements of one family of important factors, Fibroblast growth factors, we used zebrafish with an inducible dominant-negative Fgf receptor. Inhibition of Fgf signaling leads to significant reduction of stem cell activity. In contrast to the predominant view, adult neural stem cells in nonmammalian vertebrates show more neuroepithelial than glial characteristics. Nevertheless, retained epithelial properties such as distinct polarization and ventricular contact are critical common determinants to maintain neural stem cell activity in vertebrates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6665484 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.0072-09.2009 | DOI Listing |
Comput Methods Biomech Biomed Engin
January 2025
Department of Gastroenterolgy, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China.
The global rise in Crohn's Disease (CD) incidence has intensified diagnostic challenges. This study identified circadian rhythm-related biomarkers for CD using datasets from the GEO database. Differentially expressed genes underwent Weighted Gene Co-Expression Network Analysis, with 49 hub genes intersected from GeneCards data.
View Article and Find Full Text PDFStem Cells Dev
January 2025
Department of Clinical Pharmacy and Pharmacy Practices, Faculty of Pharmacy, University Malaya, Kuala Lumpur, Malaysia.
Hypertension, commonly known as high blood pressure, is a significant health issue that increases the risk of cardiovascular diseases, stroke, and renal failure. This condition broadly encompasses both primary and secondary forms. Despite extensive research, the underlying mechanisms of systemic arterial hypertension-particularly primary hypertension, which has no identifiable cause and is affected by genetic and lifestyle agents-remain complex and not fully understood.
View Article and Find Full Text PDFStem Cell Rev Rep
January 2025
Institute for Cellular and Molecular Medicine, Department of Immunology, SAMRC Extramural Unit for Stem Cell Research and Therapy, University of Pretoria, Pretoria, 0084, South Africa.
Cell Regen
January 2025
Department of Neurology, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.
The cultivation and differentiation of human embryonic stem cells (hESCs) into organoids are crucial for advancing of new drug development and personalized cell therapies. Despite establishing of chemically defined hESC culture media over the past decade, these media's reliance on growth factors, which are costly and prone to degradation, poses a challenge for sustained and stable cell culture. Here, we introduce an hESC culture system(E6Bs) that facilitates the long-term, genetically stable expansion of hESCs, enabling cells to consistently sustain high levels of pluripotency markers, including NANOG, SOX2, TRA-1-60, and SSEA4, across extended periods.
View Article and Find Full Text PDFHistochem Cell Biol
January 2025
Department of Histology and Embryology, Faculty of Medicine, Ankara Yildirim Beyazit University, 06800, Ankara, Turkey.
Bone marrow mesenchymal stromal cells (BM-MSCs) are integral components of the bone marrow microenvironment, playing a crucial role in supporting hematopoiesis. Recent studies have investigated the potential involvement of BM-MSCs in the pathophysiology of acute lymphoblastic leukemia (ALL). However, the exact contribution of BM-MSCs to leukemia progression remains unclear because of conflicting findings and limited characterization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!