AI Article Synopsis

  • Mutations in the ARX gene are linked to brain abnormalities and neurocognitive issues, with studies on Arx-deficient mice showing similar morphological problems and interneuron migration defects.
  • The creation of a genetic mouse model (Arx(-/y);Dlx5/6(CIG)) revealed that male mice experienced various seizure types resembling infantile spasms, indicating a connection between ARX mutations and pediatric epilepsy.
  • Interestingly, about 50% of female mice with a single mutant allele also exhibited seizures, paralleling findings in human female carriers, suggesting that disturbances in specific interneurons contribute to these neurological deficits.

Article Abstract

Mutations in the X-linked aristaless-related homeobox gene (ARX) have been linked to structural brain anomalies as well as multiple neurocognitive deficits. The generation of Arx-deficient mice revealed several morphological anomalies, resembling those observed in patients and an interneuron migration defect but perinatal lethality precluded analyses of later phenotypes. Interestingly, many of the neurological phenotypes observed in patients with various ARX mutations can be attributed, in part, to interneuron dysfunction. To directly test this possibility, mice carrying a floxed Arx allele were generated and crossed to Dlx5/6(CRE-IRES-GFP)(Dlx5/6(CIG)) mice, conditionally deleting Arx from ganglionic eminence derived neurons including cortical interneurons. We now report that Arx(-/y);Dlx5/6(CIG) (male) mice exhibit a variety of seizure types beginning in early-life, including seizures that behaviourally and electroencephalographically resembles infantile spasms, and show evolution through development. Thus, this represents a new genetic model of a malignant form of paediatric epilepsy, with some characteristics resembling infantile spasms, caused by mutations in a known infantile spasms gene. Unexpectedly, approximately half of the female mice carrying a single mutant Arx allele (Arx(-/+);Dlx5/6(CIG)) also developed seizures. We also found that a subset of human female carriers have seizures and neurocognitive deficits. In summary, we have identified a previously unrecognized patient population with neurological deficits attributed to ARX mutations that are recapitulated in our mouse model. Furthermore, we show that perturbation of interneuron subpopulations is an important mechanism underling the pathogenesis of developmental epilepsy in both hemizygous males and carrier females. Given the frequency of ARX mutations in patients with infantile spasms and related disorders, our data unveil a new model for further understanding the pathogenesis of these disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2685924PMC
http://dx.doi.org/10.1093/brain/awp107DOI Listing

Publication Analysis

Top Keywords

infantile spasms
16
arx mutations
12
arx
8
developmental epilepsy
8
mouse model
8
neurocognitive deficits
8
observed patients
8
mice carrying
8
arx allele
8
mutations
5

Similar Publications

Purpose: This study aimed to elucidate the distribution of intracranial gamma-aminobutyric acid (GABA) receptors in patients with infantile epileptic spasms syndrome (IESS) of normal brain MRI findings using I-iomazenil single-photon emission computed tomography (IMZ-SPECT).

Methods: This retrospective study compared IMZ-SPECT images from 20 patients with IESS of unknown etiology with normal brain MRI (unknown IESS group) and 23 patients with developmentally normal epilepsy of the same age (developmentally normal group). A three-dimensional stereotactic region of interest (ROI) template was used to divide the brain into 24 segments (left and right callosomarginal, precentral, central, parietal, angular, temporal, posterior cerebral, pericallosal, lenticular nucleus, thalamus, hippocampus, and cerebellum), and the mean accumulation of I-iomazenil in each ROI was calculated.

View Article and Find Full Text PDF

Real-world experience of diagnosis, disability, and daily management in parents of children with different genetic developmental and epileptic encephalopathies: a qualitative study.

Ann Med

December 2025

Research Group of Humanities and Qualitative Research in Health Science of Universidad Rey Juan Carlos (Hum&QRinHS), Department of Physical Therapy, Occupational Therapy, Physical Medicine and Rehabilitation, Universidad Rey Juan Carlos, Alcorcón, Spain.

Purpose: This study describes the experience of parents of children with developmental and epileptic encephalopathies (DEE) and how the disease impacts their daily lives.

Materials And Methods: A descriptive qualitative study was conducted using purposeful sampling. Twenty-one parents of children with DEEs caused by SCN1A, KCNQ2, CDKL5, PCDH19, and GNAO1 variants were included.

View Article and Find Full Text PDF

Background: Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disorder characterized by mutations in the TSC1 and TSC2 genes, leading to the dysregulation of the mammalian target of rapamycin (mTOR) pathway. This dysregulation results in the development of benign tumors across multiple organ systems and poses significant neurodevelopmental challenges. The clinical manifestations of TSC vary widely and include subependymal giant cell astrocytomas (SEGAs), renal angiomyolipomas (AMLs), facial angiofibromas (FAs), and neuropsychiatric conditions such as autism spectrum disorder (ASD).

View Article and Find Full Text PDF

Purpose: Infantile epileptic spasms syndrome (IESS) often has a severe neurodevelopmental prognosis. However, few studies have examined the aspect of elementary school enrollment. This study evaluated elementary school enrollment after adrenocorticotropic hormone (ACTH) therapy in patients with IESS.

View Article and Find Full Text PDF

Abnormalities in brain magnetic resonance imaging associated with vigabatrin therapy in an infant with infantile epileptic spasms syndrome.

Clin Toxicol (Phila)

December 2024

Department of Neuroradiology, Unidade Local de Saúde de Santa Maria, Lisboa, Portugal.

Introduction: Vigabatrin, an anticonvulsant drug used for refractory epilepsy and as first-line treatment for infantile epileptic spasms syndrome, can rarely cause brain abnormalities detectable on magnetic resonance imaging. These complications, potentially related to dose, young age, and concomitant high doses of adrenocorticotropic hormone and/or prednisolone, can lead to neurological symptoms. Upon withdrawal or dose reduction, symptoms and imaging changes tend to resolve.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!