The antibiotic heliquinomycin, which inhibits cellular DNA replication at a half-maximal inhibitory concentration (IC(50)) of 1.4-4 microM, was found to inhibit the DNA helicase activity of the human minichromosome maintenance (MCM) 4/6/7 complex at an IC(50) value of 2.4 microM. In contrast, 14 microM heliquinomycin did not inhibit significantly either the DNA helicase activity of the SV40 T antigen and Werner protein or the oligonucleotide displacement activity of human replication protein A. At IC(50) values of 25 and 6.5 microM, heliquinomycin inhibited the RNA priming and DNA polymerization activities, respectively, of human DNA polymerase-alpha/primase. Thus, of the enzymes studied, the MCM4/6/7 complex was the most sensitive to heliquinomycin; this suggests that MCM helicase is one of the main targets of heliquinomycin in vivo. It was observed that heliquinomycin did not inhibit the ATPase activity of the MCM4/6/7 complex to a great extent in the absence of single-stranded DNA. In contrast, heliquinomycin at an IC(50) value of 5.2 microM inhibited the ATPase activity of the MCM4/6/7 complex in the presence of single-stranded DNA. This suggests that heliquinomycin interferes with the interaction of the MCM4/6/7 complex with single-stranded DNA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1742-4658.2009.07064.x | DOI Listing |
J Biochem
December 2018
College of Science, Ibaraki University, Mito, Ibaraki, Japan.
The amino-terminal region of eukaryotic MCM4 is characteristic of the presence of a number of phosphorylation sites for CDK and DDK, suggesting that the region plays regulatory roles in the MCM2-7 helicase function. However, the roles are not fully understood. We analyzed the role of the amino-terminal region of human MCM4 by using MCM4/6/7 helicase as a model for MCM2-7 helicase.
View Article and Find Full Text PDFAn MCM4 mutation detected in human cancer cells from endometrium was characterized. The mutation of G486D is located within MCM-box and the glycine at 486 in human MCM4 is conserved in Saccharomyces cerevisiae MCM4 and Sulfolobus solfataricus MCM. This MCM4 mutation affected human MCM4/6/7 complex formation, since the complex containing the mutant MCM4 protein is unstable and the mutant MCM4 protein is tend to be degraded.
View Article and Find Full Text PDFJ Biochem
June 2015
College of Science, Ibaraki University, Mito, Ibaraki 351-8511, Japan.
A number of gene mutations are detected in cells derived from human cancer tissues, but roles of these mutations in cancer cell development are largely unknown. We examined G364R mutation of MCM4 detected in human skin cancer cells. Formation of MCM4/6/7 complex is not affected by the mutation.
View Article and Find Full Text PDFPLoS One
January 2015
Genome Dynamics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
The Mini-chromosome maintenance (Mcm) proteins are essential as central components for the DNA unwinding machinery during eukaryotic DNA replication. DNA primase activity is required at the DNA replication fork to synthesize short RNA primers for DNA chain elongation on the lagging strand. Although direct physical and functional interactions between helicase and primase have been known in many prokaryotic and viral systems, potential interactions between helicase and primase have not been explored in eukaryotes.
View Article and Find Full Text PDFBMC Biochem
February 2013
Graduate Program in Genetics, Molecular and Cell Biology, University of Southern California, Los Angeles, CA 90089, USA.
Background: The hetero-hexamer of the eukaryotic minichromosome maintenance (MCM) proteins plays an essential role in replication of genomic DNA. The ring-shaped Mcm2-7 hexamers comprising one of each subunit show helicase activity in vitro, and form double-hexamers on DNA. The Mcm4/6/7 also forms a hexameric complex with helicase activity in vitro.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!