A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Stress buildup under start-up shear flows in self-assembled transient networks of telechelic associating polymers. | LitMetric

Stress buildup under start-up shear flows in self-assembled transient networks of telechelic associating polymers.

Langmuir

Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan.

Published: August 2009

The nonaffine transient network theory is used to study the time development of the shear and normal stresses under start-up shear flows in networks formed by self-assembled telechelic, hydrophobically modified water-soluble polymers. The initial slope, strain hardening, and overshoot of the shear stress are studied in detail in relation to the nonlinear tension-elongation curve of the elastically active chains in the network. The condition for the occurrence of strain hardening (upward deviation of the stress from the reference curve defined by the linear moduli) is found to be gamma > gammac(A), where gamma is the shear rate, gamma(c) is its critical value for strain hardening, and A is the amplitude of the nonlinear term in the tension of a chain. The critical shear rate gamma(c) is calculated as a function of A. It is approximately 6.3 (in the time unit of the reciprocal thermal dissociation rate) for a nonlinear chain with A = 10. The overshoot time t(max) when the stress reaches a maximum and the total deformation gamma(max) = gamma(t max) accumulated before the peak time are obtained in terms of the molecular parameters of the polymer chain. The maximum deformation gamma(max) turns out to depend weakly upon the shear rate gamma. The first and second normal stress differences are also studied on the basis of the exact numerical integration of the theoretical model by paying special attention to their overshoot, undershoot, and sign change as a function of the shear rate. These theoretical results are compared with recent rheological experiments of the solutions of telechelic hydrophobically modified poly(ethylene oxide)s carrying short branched alkyl chains (2-decyl-tetradecyl) at both ends.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la804227uDOI Listing

Publication Analysis

Top Keywords

shear rate
16
strain hardening
12
shear
8
start-up shear
8
shear flows
8
telechelic hydrophobically
8
hydrophobically modified
8
rate gammac
8
deformation gammamax
8
stress
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!