Studies of beta-sheet peptide/phospholipid interactions are important for an understanding of the folding of beta-sheet-rich membrane proteins and the action of antimicrobial and toxic peptides. Further, self-assembling peptides have numerous applications in medicine and therefore an insight is required into the relation between peptide molecular structure and biomembrane activity. We previously developed one of the simplest known model peptide systems which, above a critical concentration (c*) in solution, undergoes nucleated one-dimensional self-assembly from a monomeric random coil into a hierarchy of well defined beta-sheet structures. Here we examine the effects of peptide aggregation, polarity, charge, and applied field on peptide interactions with dioleoyl phosphatidylcholine (DOPC) monolayers using electrochemical techniques. The interactions of six systematically altered 11 residue beta-sheet tape-forming peptides were investigated. The following findings with respect to 11 residue beta-sheet peptide-DOPC interaction arose from the study: (i) The solution monomer peptide species is the monolayer active moeity. (ii) Amphiphilic peptides are more monolayer active than polar peptides in the absence of applied electric field. (iii) Positive charge on amphiphilic peptides facilitates monolayer interaction in the absence of applied electric field. (iv) Negative applied electric field facilitates monolayer interaction with positively charged amphiphilic and polar peptides. (v) Neutral amphiphilic peptides permeabilize DOPC layers to ions to the greatest extent. (vi) The beta-sheet tape forming peptides are shown to be significantly less monolayer disruptive than antimicrobial peptides. These conclusions will greatly contribute to the rational design of new peptide-based biomaterials and biosensors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la803368r | DOI Listing |
ACS Appl Energy Mater
December 2024
Department of Chemical and Environmental Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest H-1111, Hungary.
Amphiphilic copolymers of comb-like poly(poly(ethylene glycol) methacrylate) (PPEGMA) with methyl methacrylate (MMA) synthesized by one-pot atom transfer radical polymerization were mixed with lithium bis (trifluoromethanesulfonyl) imide salt to formulate dry solid polymer electrolytes (DSPE) for semisolid-state Li-ion battery applications. The PEO-type side chain length (EO monomer's number) in the PEGMA macromonomer units was varied, and its influence on the mechanical and electrochemical characteristics was investigated. It was found that the copolymers, due to the presence of PMMA segments, possess viscoelastic behavior and less change in mechanical properties than a PEO homopolymer with 100 kDa molecular weight in the investigated temperature range.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, USA.
Precise blood glucose control continues to be a critical challenge in the treatment and management of type 1 diabetes in order to mitigate both acute and chronic complications. This study investigates the development of a supramolecular peptide amphiphile (PA) material functionalized with phenylboronic acid (PBA) for glucose-responsive glucagon delivery. The PA-PBA system self-assembles into nanofibrillar hydrogels in the presence of physiological glucose levels, resulting in stable hydrogels capable of releasing glucagon under hypoglycemic conditions.
View Article and Find Full Text PDFSmall
December 2024
Chemical Biology Unit, Institute of Nano Science and Technology (INST), Sector 81, Mohali, Punjab, 140306, India.
Dynamic peptide networks represent an attractive structural space of supramolecular polymers in the realm of emergent complexity. Point mutations in the peptide sequence exert profound effects over the landscapes of self-assembly with an intricate interplay among the structure-function relationships. Herein, the pathway complexity of an arginine-rich peptide is studied, FmocVFFARR derived by the mutation of minimalist amyloid-inspired peptide amphiphile FmocVFFAKK, thereby focusing on its pathway-dependent self-assembly behavior.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China.
Neuropathic pain, one of the most refractory pain diseases, remains a formidable medical challenge. There is still an unmet demand for effective and safe therapies to address this condition. Herein, a rat model of nerve injury-induced neuropathic pain is first established to explore its pathophysiological characteristics.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China.
Cross-β structures are crucial in driving protein folding and aggregation. However, due to their strong aggregating tendency, the precise control of the self-assembly of β-sheet-forming peptides remains a challenge. We propose a molecular geometry strategy to study and control the self-assembly of cross-β structures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!