Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Sodium borohydride, NaBH4, has been considered the most attractive hydrogen-storage material for portable fuel cell applications, as it provides a safe and practical means of producing hydrogen. In a recent communication (Zahmakiran, M.; Ozkar, S. Langmuir 2008, 24, 7065), we have reported a record total turnover number (TTON) of 103 200 mol H2/mol Ru and turnover frequency (TOF) up to 33 000 mol H2/mol Ru x h obtained by using intrazeolite ruthenium(0) nanoclusters in the hydrolysis of sodium borohydride. Here we report full details of the kinetic studies on the intrazeolite ruthenium(0) nanoclusters catalyzed hydrolysis of sodium borohydride in both aqueous and basic solutions. Expectedly, the intrazeolite ruthenium(0) nanoclusters show unprecedented catalytic lifetime, TTON = 27 200 mol H2/mol Ru, and TOF up to 4000 mol H2/mol Ru x h in the hydrolysis of sodium borohydride in basic solution (5% wt NaOH) as well. More importantly, the intrazeolite ruthenium(0) nanoclusters are isolable, bottleable, redispersible, and yet catalytically active. They retain 76% or 61% of their initial catalytic activity at the fifth run with a complete release of hydrogen in aqueous and basic medium, respectively. The intrazeolite ruthenium(0) nanoclusters were isolated as black powder and characterized by using a combination of advanced analytical techniques including XRD, HRTEM, TEM-EDX, SEM, XPS, ICP-OES, and N2 adsorption.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la803391c | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!