A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Zeolite-confined ruthenium(0) nanoclusters catalyst: record catalytic activity, reusability, and lifetime in hydrogen generation from the hydrolysis of sodium borohydride. | LitMetric

Sodium borohydride, NaBH4, has been considered the most attractive hydrogen-storage material for portable fuel cell applications, as it provides a safe and practical means of producing hydrogen. In a recent communication (Zahmakiran, M.; Ozkar, S. Langmuir 2008, 24, 7065), we have reported a record total turnover number (TTON) of 103 200 mol H2/mol Ru and turnover frequency (TOF) up to 33 000 mol H2/mol Ru x h obtained by using intrazeolite ruthenium(0) nanoclusters in the hydrolysis of sodium borohydride. Here we report full details of the kinetic studies on the intrazeolite ruthenium(0) nanoclusters catalyzed hydrolysis of sodium borohydride in both aqueous and basic solutions. Expectedly, the intrazeolite ruthenium(0) nanoclusters show unprecedented catalytic lifetime, TTON = 27 200 mol H2/mol Ru, and TOF up to 4000 mol H2/mol Ru x h in the hydrolysis of sodium borohydride in basic solution (5% wt NaOH) as well. More importantly, the intrazeolite ruthenium(0) nanoclusters are isolable, bottleable, redispersible, and yet catalytically active. They retain 76% or 61% of their initial catalytic activity at the fifth run with a complete release of hydrogen in aqueous and basic medium, respectively. The intrazeolite ruthenium(0) nanoclusters were isolated as black powder and characterized by using a combination of advanced analytical techniques including XRD, HRTEM, TEM-EDX, SEM, XPS, ICP-OES, and N2 adsorption.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la803391cDOI Listing

Publication Analysis

Top Keywords

ruthenium0 nanoclusters
24
sodium borohydride
20
intrazeolite ruthenium0
20
hydrolysis sodium
16
mol h2/mol
16
catalytic activity
8
200 mol
8
aqueous basic
8
nanoclusters
6
sodium
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!