Purpose: We investigate a new heat delivery technique for the local treatment of solid tumors. The technique involves injecting a formulation that solidifies to form an implant in situ. This implant entraps superparamagnetic iron oxide nanoparticles (SPIONs) embedded in silica microbeads for magnetically induced moderate hyperthermia. Particle entrapment prevents phagocytosis and distant migration of SPIONs. The implant can be repeatedly heated by magnetic induction.
Methods: We evaluated heating and treatment efficacies by means of thermometry and survival studies in nude mice carrying subcutaneous human colocarcinomas. At day 1, we injected the formulation into the tumor. At day 2, a single 20-min hyperthermia treatment was delivered by 141-kHz magnetic induction using field strengths of 9 to 12 mT under thermometry.
Results: SPIONs embedded in silica microbeads were effectively confined within the implant at the injection site. Heat-induced necro-apoptosis was assessed by histology on day 3. On average, 12 mT resulted in tumor temperature of 47.8 degrees C, and over 70% tumor necrosis that correlated to the heat dose (AUC = 282 degrees C.min). In contrast, a 9-mT field strength induced tumoral temperature of 40 degrees C (AUC = 131 degrees C.min) without morphologically identifiable necrosis. Survival after treatment with 10.5 or 12 mT fields was significantly improved compared to non-implanted and implanted controls. Median survival times were 27 and 37 days versus 12 and 21 days respectively.
Conclusion: Five of eleven mice (45%) of the 12 mT group survived one year without any tumor recurrence, holding promise for tumor therapy using magnetically induced moderate hyperthermia through injectable implants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/02656730802713557 | DOI Listing |
Purpose: Undifferentiated pleomorphic sarcomas (UPSs) demonstrate therapy-induced hemosiderin deposition, granulation tissue formation, fibrosis, and calcification. We aimed to determine the treatment-assessment value of morphologic tumoral hemorrhage patterns and first- and high-order radiomic features extracted from contrast-enhanced susceptibility-weighted imaging (CE-SWI).
Materials And Methods: This retrospective institutional review board-authorized study included 33 patients with extremity UPS with magnetic resonance imaging and resection performed from February 2021 to May 2023.
Sci Transl Med
January 2025
Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany.
In Alzheimer's disease (AD), amyloid-β (Aβ) triggers the aggregation and spreading of tau pathology, which drives neurodegeneration and cognitive decline. However, the pathophysiological link between Aβ and tau remains unclear, which hinders therapeutic efforts to attenuate Aβ-related tau accumulation. Aβ has been found to trigger neuronal hyperactivity and hyperconnectivity, and preclinical research has shown that tau spreads across connected neurons in an activity-dependent manner.
View Article and Find Full Text PDFInvest Radiol
January 2025
From the Department of Neuroradiology, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany (L.S.L., K.H.H., A.K., M.A.B., S.A., A.E.O.); Institute of Medical Biostatistics, Epidemiology, and Informatics, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany (R.H.P.); and Siemens Healthineers AG, Forchheim, Germany (D.P., D.N.S.).
Objectives: The aim of this study was to investigate the occurrence of motion artifacts and image quality of brain magnetic resonance imaging (MRI) T1-weighted imaging applying 3D motion correction via the Scout Accelerated Motion Estimation and Reduction (SAMER) framework compared with conventional T1-weighted imaging at 1.5 T.
Materials And Methods: A preliminary study involving 14 healthy volunteers assessed the impact of the SAMER framework on induced motion during 3 T MRI scans.
J Phys Chem Lett
January 2025
Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir Prelog Weg 2, 8093 Zurich, Switzerland.
Relaxation-induced dipolar modulation enhancement (RIDME) is a pulse EPR experiment originally designed to determine distances between spin labels. However, RIDME has several features that make it an efficient tool in a number of "nonconventional" applications, away from the original purpose of this pulse experiment. RIDME appears to be an interesting experiment to probe longitudinal electron spin dynamics, e.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
A full-scale structural search was performed using density functional theory calculations and a universal structural prediction evolutionary algorithm. This produced a lowest energy two-dimensional (2D) CoB structure. The CoB-1 global minimum structure has unusual inverse double sandwich features.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!