AFLP is a DNA fingerprinting technique, resulting in binary band presence-absence patterns, called profiles, with known or unknown band positions. We model AFLP as a sampling procedure of fragments, with lengths sampled from a distribution. Bands represent fragments of specific lengths. We focus on estimation of pairwise genetic similarity, defined as average fraction of common fragments, by AFLP. Usual estimators are Dice (D) or Jaccard coefficients. D overestimates genetic similarity, since identical bands in profile pairs may correspond to different fragments (homoplasy). Another complicating factor is the occurrence of different fragments of equal length within a profile, appearing as a single band, which we call collision. The bias of D increases with larger numbers of bands, and lower genetic similarity. We propose two homoplasy- and collision-corrected estimators of genetic similarity. The first is a modification of D, replacing band counts by estimated fragment counts. The second is a maximum likelihood estimator, only applicable if band positions are available. Properties of the estimators are studied by simulation. Standard errors and confidence intervals for the first are obtained by bootstrapping, and for the second by likelihood theory. The estimators are nearly unbiased, and have for most practical cases smaller standard error than D. The likelihood-based estimator generally gives the highest precision. The relationship between fragment counts and precision is studied using simulation. The usual range of band counts (50-100) appears nearly optimal. The methodology is illustrated using data from a phylogenetic study on lettuce.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2715462PMC
http://dx.doi.org/10.1007/s00122-009-1047-9DOI Listing

Publication Analysis

Top Keywords

genetic similarity
20
band positions
8
band counts
8
fragment counts
8
studied simulation
8
band
6
genetic
5
similarity
5
bands
5
fragments
5

Similar Publications

Profile and resistance levels of 136 integron resistance genes.

NPJ Antimicrob Resist

October 2023

Molecular Basis of Adaptation. Departamento de Sanidad Animal. Facultad de Veterinaria de la Universidad Complutense de Madrid, Madrid, Spain.

Integrons have played a major role in the rise and spread of multidrug resistance in Gram-negative pathogens and are nowadays commonplace among clinical isolates. These platforms capture, stockpile, and modulate the expression of more than 170 antimicrobial resistance cassettes (ARCs) against most clinically-relevant antibiotics. Despite their importance, our knowledge on their profile and resistance levels is patchy, because data is scattered in the literature, often reported in different genetic backgrounds and sometimes extrapolated from sequence similarity alone.

View Article and Find Full Text PDF

Polycomb group (PcG) and Trithorax group (TrxG) complexes represent two major components of the epigenetic machinery. This study aimed to delineate phenotypic similarities and differences across developmental conditions arising from rare variants in PcG and TrxG genes, using data-driven approaches. 462 patients with a PcG or TrxG-associated condition were identified in the DECIPHER dataset.

View Article and Find Full Text PDF

Evaluating cutinase from Fusarium oxysporum as a biocatalyst for the degradation of nine synthetic polymer.

Sci Rep

January 2025

Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará, 66075-110, Brazil.

Plastic poses a significant environmental impact due to its chemical resilience, leading to prolonged and degradation times and resulting in widespread adverse effects on global flora and fauna. Cutinases are essential enzymes in the biodegradation process of synthetic polymers like polyethylene terephthalate (PET), which recognized organisms can break down. Here, we used molecular dynamics and binding free energy calculations to explore the interaction of nine synthetic polymers, including PET, with Cutinase from Fusarium oxysporum (FoCut).

View Article and Find Full Text PDF

Targeting IGF1 to alleviate obesity through regulating energy expenditure and fat deposition.

Sci China Life Sci

January 2025

State Key Laboratory of Pharmaceutical Biotechnology, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing, 210061, China.

Insulin-like growth factor 1 (IGF1) is a regulator of both cellular hypertrophy and lipogenesis, which are two key processes for pathogenesis of obesity. However, the in vivo role of IGF1 in the development of obesity remains unclear. Here, we show that IGF1 expression is increased in adipose tissue in obese human patients and animal models.

View Article and Find Full Text PDF

Monogenic lupus is an extremely rare clinical condition in children. Defects in the complement pathway are the most common causes of monogenic lupus. C1qC deficiency is one of the defects in this pathway and is even rarer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!