Repetitive collapse of the upper airway during obstructive sleep apnea/hypopnea (OSA) exposes the brain of sufferers to frequent, transient, hypoxic episodes. The loss of cerebrovascular reactivity in sleep, and particularly in OSA, means that physiologic compensatory mechanisms may not ensure adequate brain oxygen levels. This (31)P magnetic resonance spectroscopy study, of 13 males with severe, untreated OSA undertaken after overnight sleep deprivation, represents the first, seconds time-scale analysis of human brain bioenergetics during transient hypoxia and demonstrates that a moderate degree of oxygen desaturation during sleep has significant effects on brain bioenergetic status. Oxygen desaturation >10% of sleeping baseline resulted in decreases in brain adenosine triphosphate levels (P<0.01), and increases in inorganic phosphate (P<0.0001) with no concomitant changes in phosphocreatine or brain pH. This indicates that the mechanism of adenosine triphosphate depletion in these patients is different to that observed in normoxic, awake working brain. These data show that the buffering capacity of phosphocreatine and the creatine kinase system is not active in mild transient hypoxia and that cerebrovascular compensatory mechanisms are not adequate to prevent decrements in brain high-energy phosphates in OSA. Transient hypoxia experienced during sleep may impair brain function more than previously thought.

Download full-text PDF

Source
http://dx.doi.org/10.1038/jcbfm.2009.57DOI Listing

Publication Analysis

Top Keywords

brain bioenergetics
8
obstructive sleep
8
oxygen desaturation
8
brain
6
sleep
5
dynamic changes
4
changes brain
4
bioenergetics obstructive
4
sleep apnea
4
apnea repetitive
4

Similar Publications

Glucose Transporter 1 Deficiency Impairs Glucose Metabolism and Barrier Induction in Human Induced Pluripotent Stem Cell-Derived Astrocytes.

J Cell Physiol

January 2025

Department of Pharmaceutical Sciences and Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA.

Glucose is a major source of energy for the brain. At the blood-brain barrier (BBB), glucose uptake is facilitated by glucose transporter 1 (GLUT1). GLUT1 Deficiency Syndrome (GLUT1DS), a haploinsufficiency affecting SLC2A1, reduces glucose brain uptake.

View Article and Find Full Text PDF

Lipid droplets (LDs), serving as the convergence point of energy metabolism and multiple signaling pathways, have garnered increasing attention in recent years. Different cell types within the central nervous system (CNS) can regulate energy metabolism to generate or degrade LDs in response to diverse pathological stimuli. This article provides a comprehensive review on the composition of LDs in CNS, their generation and degradation processes, their interaction mechanisms with mitochondria, the distribution among different cell types, and the roles played by these cells-particularly microglia and astrocytes-in various prevalent neurological disorders.

View Article and Find Full Text PDF

Hepatic encephalopathy (HE) is a syndrome that arises from acute or chronic liver failure. This study was devised to assess the impact of a combination of boswellic acid (BA) and low doses of gamma radiation (LDR) on thioacetamide (TAA)-induced HE in an animal model. The effect of daily BA treatment (175 mg/kg body weight, for four weeks) and/or fractionated low-dose γ-radiation (LDR; 0.

View Article and Find Full Text PDF

Nutritional epidemiology aims to link dietary exposures to chronic disease, but the instruments for evaluating dietary intake are inaccurate. One way to identify unreliable data and the sources of errors is to compare estimated intakes with the total energy expenditure (TEE). In this study, we used the International Atomic Energy Agency Doubly Labeled Water Database to derive a predictive equation for TEE using 6,497 measures of TEE in individuals aged 4 to 96 years.

View Article and Find Full Text PDF

Alzheimer's disease (AD), a prevalent neurodegenerative disorder, is characterized by mitochondrial dysfunction and immune dysregulation. This study is aimed at developing a risk prediction model for AD by integrating multi-omics data and exploring the interplay between mitochondrial energy metabolism-related genes (MEMRGs) and immune cell dynamics. We integrated four GEO datasets (GSE132903, GSE29378, GSE33000, GSE5281) for differential gene expression analysis, functional enrichment, and weighted gene co-expression network analysis (WGCNA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!