Chlorosomes are the largest and most efficient light-harvesting antennae found in nature, and they are constructed from hundreds of thousands of self-assembled bacteriochlorophyll (BChl) c, d, or e pigments. Because they form very large and compositionally heterogeneous organelles, they had been the only photosynthetic antenna system for which no detailed structural information was available. In our approach, the structure of a member of the chlorosome class was determined and compared with the wild type (WT) to resolve how the biological light-harvesting function of the chlorosome is established. By constructing a triple mutant, the heterogeneous BChl c pigment composition of chlorosomes of the green sulfur bacteria Chlorobaculum tepidum was simplified to nearly homogeneous BChl d. Computational integration of two different bioimaging techniques, solid-state NMR and cryoEM, revealed an undescribed syn-anti stacking mode and showed how ligated BChl c and d self-assemble into coaxial cylinders to form tubular-shaped elements. A close packing of BChls via pi-pi stacking and helical H-bonding networks present in both the mutant and in the WT forms the basis for ultrafast, long-distance transmission of excitation energy. The structural framework is robust and can accommodate extensive chemical heterogeneity in the BChl side chains for adaptive optimization of the light-harvesting functionality in low-light environments. In addition, syn-anti BChl stacks form sheets that allow for strong exciton overlap in two dimensions enabling triplet exciton formation for efficient photoprotection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2680731PMC
http://dx.doi.org/10.1073/pnas.0903534106DOI Listing

Publication Analysis

Top Keywords

bchl
6
alternating syn-anti
4
syn-anti bacteriochlorophylls
4
form
4
bacteriochlorophylls form
4
form concentric
4
concentric helical
4
helical nanotubes
4
nanotubes chlorosomes
4
chlorosomes chlorosomes
4

Similar Publications

The natural Z-scheme of oxygenic photosynthesis efficiently drives electron transfer from photosystem II (PSII) to photosystem I (PSI) via an electron transport chain, despite the lower energy levels of PSII. Inspired by this sophisticated mechanism, we present a layered cascade bio-solar cell (CBSC) that emulates the Z-scheme. In this design, chlorophyll derivatives (Chl) act as PSI analogs, while bacteriochlorophyll derivatives (BChl) serve as PSII analogs in the active layer.

View Article and Find Full Text PDF

Harnessing nature's palette: Exploring photosynthetic pigments for sustainable biotechnology.

N Biotechnol

January 2025

Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n, Valladolid 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, Valladolid 47011, Spain. Electronic address:

Photosynthetic microorganisms such as cyanobacteria, microalgae, and anoxygenic phototrophic bacteria (APB) have emerged as sustainable and economic biotechnology platforms due to their ability to transform energy from light into chemicals through photosynthesis. The light is absorbed by photosynthetic pigment-protein antenna complexes which are composed of pigments such as bacteriochlorophylls (BChl) and carotenoids in APB, and chlorophylls (Chl), phycobiliproteins (PBP), and carotenoids in cyanobacteria and microalgae. These photosynthetic pigments are essential in the physiology of photosynthetic microorganisms and offer significant health benefits due to their potent antioxidant activity, with properties that include anticancer, antiaging, antiproliferative, anti-inflammatory, and neuroprotective effects.

View Article and Find Full Text PDF

The functional units of natural photosynthetic systems control the process of converting sunlight into chemical energy. In this article, we explore a series of chemically and structurally modified bacteriochlorophyll and chlorophyll pigments through computational chemistry to evaluate their electronic spectroscopy properties. More specifically, we use multiconfigurational and time-dependent density functional theory methods, along with molecular dynamics simulations, to compute the models' energetics both in an implicit and explicit solvent environment.

View Article and Find Full Text PDF

Heavy metal and nitrogen contaminations are serious concerns in aquatic environments. Marichromatium gracile YL28, a marine purple sulfur bacterium, has shown great potential as a bioremediation agent for removing inorganic nitrogen from marine water. This study further investigated its ability to simultaneously absorb heavy metals, including Pb(II), Cu(II), Cd(II) and Cr(VI), and remove inorganic nitrogen.

View Article and Find Full Text PDF

Biosynthesis of Bacteriochlorophylls and Bacteriochlorophyllides in Escherichia coli.

Biotechnol Bioeng

December 2024

Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.

Photosynthesis, the most important biological process on Earth, converts light energy into chemical energy with essential pigments like chlorophylls and bacteriochlorophylls. The ability to reconstruct photosynthesis in heterotrophic organisms could significantly impact solar energy utilization and biomass production. In this study, we focused on constructing light-dependent biosynthesis pathways for bacteriochlorophyll (BChl) a and bacteriochlorophyllide (BChlide) d and c in the model strain Escherichia coli.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!