Pain stimulates some behaviors (e.g., withdrawal responses) but depresses many other behaviors (e.g., feeding). Pain-stimulated behaviors are widely used in preclinical research on pain and analgesia, but human and veterinary medicine often rely on measures of functional impairment and pain-depressed behavior to diagnose pain or assess analgesic efficacy. In view of the clinical utility of measures of pain-depressed behaviors, our laboratory has focused on the development of methods for preclinical assays of pain-depressed behavior in rodents. The present study compared the effects of a chemical noxious stimulus (IP lactic acid injections) and an opioid analgesic (morphine) administered alone or in combination on the stretching response (a pain-stimulated behavior) and intracranial self-stimulation (ICSS; a behavior that may be depressed by pain) in rats. In the ICSS procedure, rats implanted with electrodes in the lateral hypothalamus responded to electrical stimulation across a range of current frequencies to permit rapid determination of frequency-rate curves and evaluation of curve shifts following treatment. Lactic acid alone produced a concentration-dependent stimulation of stretching and depression of ICSS, expressed as rightward shifts in ICSS frequency-rate curves. Morphine had little effect alone, but it produced a dose-dependent blockade of both acid-stimulated stretching and acid-depressed ICSS. Both lactic acid and morphine were equipotent in the stretching and ICSS procedures. These results suggest that ICSS may be useful as a behavioral baseline for studies of pain-depressed behavior.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2717894PMC
http://dx.doi.org/10.1016/j.pain.2009.04.010DOI Listing

Publication Analysis

Top Keywords

pain-depressed behavior
16
lactic acid
12
intracranial self-stimulation
8
studies pain-depressed
8
frequency-rate curves
8
icss
7
behavior
6
pain-depressed
5
effects pain-
4
pain- analgesia-related
4

Similar Publications

We recently developed a series of nalfurafine analogs (TK10, TK33, and TK35) that may serve as non-addictive candidate analgesics. These compounds are mixed-action agonists at the kappa and delta opioid receptors (KOR and DOR, respectively) and produce antinociception in a mouse warm-water tail-immersion test while failing to produce typical mu opioid receptor (MOR)-mediated side effects. The warm-water tail-immersion test is an assay of pain-stimulated behavior vulnerable to false-positive analgesic-like effects by drugs that produce motor impairment.

View Article and Find Full Text PDF

The Minor Phytocannabinoid Delta-8-Tetrahydrocannabinol Attenuates Collagen-Induced Arthritic Inflammation and Pain-Depressed Behaviors.

J Pharmacol Exp Ther

October 2024

School of Nursing (S.O.V., S.G.K.) and Department of Psychological Sciences (S.O.V.), University of Connecticut, Storrs, Connecticut; Department of Orthodontics (A.Z., C.N.D.) and Department of Biomedical Engineering (C.N.D.), School of Dental Medicine, University of Connecticut, Farmington, Connecticut; and Department of Orthopedic Surgery and Department of Cell Biology, School of Medicine, University of Connecticut, Farmington, Connecticut (C.N.D.)

Patients with arthritis report using cannabis for pain management, and the major cannabinoid delta-9-tetrahydrocannabinol (Δ-THC) has anti-inflammatory properties, yet the effects of minor cannabinoids on arthritis are largely unknown. The goal of the present study was to determine the antiarthritic potential of the minor cannabinoid delta-8-tetrahydrocannabinol (Δ-THC) using the collagen-induced arthritis (CIA) mouse model. Adult male DBA/1J mice were immunized and boosted 21 days later with an emulsion of collagen and complete Freund's adjuvant.

View Article and Find Full Text PDF

Ketamine has been shown to produce analgesia in various acute and chronic pain states; however, abuse liability concerns have limited its utility. The ketamine metabolite (2R,6R)-hydroxynorketamine (HNK) has been shown to produce antidepressant-like effects similar to ketamine without abuse liability concerns. (2R,6R)-HNK produces sustained analgesia in models of chronic pain, but has yet to be evaluated in models of acute pain.

View Article and Find Full Text PDF

Low-Efficacy Mu Opioid Agonists as Candidate Analgesics: Effects of Novel C-9 Substituted Phenylmorphans on Pain-Depressed Behavior in Mice.

J Pharmacol Exp Ther

October 2024

Department of Pharmacology & Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia (E.J.S., H.I.A., M.K., Y.K.L., S.S.N.) and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, NIDA and NIAAA, Bethesda, Maryland (E.W.B., D.R.C., E.S.G., A.E.J., J.A.L., K.C.R., A.S.)

Low-efficacy mu opioid receptor (MOR) agonists may serve as novel candidate analgesics with improved safety relative to high-efficacy opioids. This study used a recently validated assay of pain-depressed behavior in mice to evaluate a novel series of MOR-selective C9-substituted phenylmorphan opioids with graded MOR efficacies. Intraperitoneal injection of dilute lactic acid (IP acid) served as a noxious stimulus to depress locomotor activity by mice in an activity chamber composed of two compartments connected by an obstructed door.

View Article and Find Full Text PDF

Introduction: Intermediate efficacy mu opioid receptor (MOR) agonists have potential to retain analgesic effectiveness while improving safety, but the optimal MOR efficacy for effective and safe opioid analgesia is unknown. Preclinical assays of pain-depressed behavior can assess effects of opioids and other candidate analgesics on pain-related behavioral depression, which is a common manifestation of clinically relevant pain and target of pain treatment. Accordingly, the present study goal was to validate a novel assay of pain-depressed locomotor behavior in mice and evaluate the role of MOR efficacy as a determinant of opioid analgesic effects and related safety measures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!