One of the most extensively debated topics in educational psychology is whether punishment or reward is more effective for producing short-term and long-term behavioral changes, and it has been proposed that the effect of punishment is less durable than the effect of reward. However, no conclusive evidence to support this proposal has been obtained in any animals. We recently found that punishment memory decayed much faster than reward memory in olfactory learning and visual pattern learning in crickets. We also found that neurotransmitters conveying punishment and reward signals differ in crickets: dopaminergic and octopaminergic neurons play critical roles in conveying punishment and reward signals, respectively. In this study, we investigated whether these features are general features of cricket learning or are specific to olfactory and visual pattern learning. We found that crickets have the capability of color learning and that their color learning has the same features. Based on our findings in crickets and those reported in other species of insects, we conclude that these two features are conserved in many forms of insect learning. In mammals, aminergic neurons are known to convey reward and punishment signals in learning of a variety of sensory stimuli. We propose that the faster decay of punishment memory than reward memory observed in insects and humans reflects different cellular and biochemical processes after activation of receptors for amines conveying punishment and reward signals. The possible adaptive significance of relatively limited durability of punishment memory is proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nlm.2009.05.003DOI Listing

Publication Analysis

Top Keywords

punishment memory
16
punishment reward
16
reward memory
12
conveying punishment
12
reward signals
12
punishment
10
reward
9
memory reward
8
learning
8
visual pattern
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!