An ultrasensitive cantilever, oscillating parallel to a surface in vacuum, is used to probe weak thermal electric field gradient fluctuations over thin polymer films. We measure the power spectrum of cantilever frequency fluctuations as a function of cantilever height and voltage over polymers of various compositions and thicknesses. The data are well described by a linear-response theory that calculates stochastic electric fields arising from thermally driven dielectric fluctuations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2838734PMC
http://dx.doi.org/10.1021/nl9004332DOI Listing

Publication Analysis

Top Keywords

electric field
8
field gradient
8
gradient fluctuations
8
quantifying electric
4
fluctuations
4
fluctuations polymers
4
polymers ultrasensitive
4
ultrasensitive cantilevers
4
cantilevers ultrasensitive
4
ultrasensitive cantilever
4

Similar Publications

In this work, a theoretical approach is developed to investigate the structural properties of ionic microgels induced by a circularly polarized (CP) electric field. Following a similar study on chain formation in the presence of linearly polarized fields [T. Colla , , 2018, , 4321-4337], we propose an effective potential between microgels which incorporates the field-induced interactions a static, time averaged polarizing charge at the particle surface.

View Article and Find Full Text PDF

Stochastic Density Functional Theory for Ions in a Polar Solvent.

Phys Rev Lett

December 2024

Laboratoire PHENIX, Sorbonne Université, CNRS, (Physico-Chimie des Electrolytes et Nanosystèmes Interfaciaux), 4 Place Jussieu, 75005 Paris, France.

In recent years, the theoretical description of electrical noise and fluctuation-induced effects in electrolytes has gained renewed interest, enabled by stochastic field theories like stochastic density functional theory (SDFT). Such models, however, treat solvents implicitly, ignoring their generally polar nature. In the present study, starting from microscopic principles, we derive a fully explicit SDFT theory that applies to ions in a polar solvent.

View Article and Find Full Text PDF

Laser Wakefield Acceleration of Ions with a Transverse Flying Focus.

Phys Rev Lett

December 2024

Stanford University, Department of Mechanical Engineering, Stanford, California 94305, USA.

The extreme electric fields created in high-intensity laser-plasma interactions could generate energetic ions far more compactly than traditional accelerators. Despite this promise, laser-plasma accelerator experiments have been limited to maximum ion energies of ∼100  MeV/nucleon. The central challenge is the low charge-to-mass ratio of ions, which has precluded one of the most successful approaches used for electrons: laser wakefield acceleration.

View Article and Find Full Text PDF

Background: Stereotactic radiosurgery (SRS) is widely used for managing brain metastases (BMs), but an adverse effect, radionecrosis, complicates post-SRS management. Differentiating radionecrosis from tumor recurrence non-invasively remains a major clinical challenge, as conventional imaging techniques often necessitate surgical biopsy for accurate diagnosis. Machine learning and deep learning models have shown potential in distinguishing radionecrosis from tumor recurrence.

View Article and Find Full Text PDF

Electric-field-induced shape memory effect has potential applications in electromechanical actuator. Here, this study proposes the a phase structure design routine in (1-x)(75NaBiTiO-25SrTiO)-xPbTiO ceramics to obtain large electromechanical response and shape memory effect. It is found that the shape memory effect is closely related to the bending deformation induced by asymmetric polarization between positive and negative electrodes, which is resulted from the reductions of Bi and Pb because of electron injection from negative electrode.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!