A recently developed bead-based deadenylase electrochemiluminescence assay for ricin is simple and sensitive in its ability to detect ricin, based on the catalytic activity of the toxin subunit, ricin A chain. The assay was modified to work in a 96-well plate format and evaluated by using juice samples. The plate-based assay, unlike the bead-based assay, includes wash steps that enable the removal of food particles. These steps minimize matrix effects and improve the signal-to-noise ratios and limits of detection (LOD). The LOD values for ricin in apple juice, vegetable juice, and citrate buffer by using the bead-based assay were 0.4, 1, and 0.1 microg/ml, respectively. In contrast, the LOD values for ricin by using the plate-based assay were 0.04, 0.1, and 0.04 microg/ml in apple juice, vegetable juice, and citrate buffer, respectively. The plate-based assay displayed three- to 10-fold lower LOD values than did the bead-based assay. Signal-to-noise ratios for the plate-based assay were comparable to those for the bead-based assay for ricin in citrate buffer, but 2- to 4.5-fold higher when the plate-based assay was used for analysis of juice samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4315/0362-028x-72.4.903 | DOI Listing |
Antibiotics (Basel)
January 2025
Vocational School of Health Services, Akdeniz University, 07058 Antalya, Turkey.
Colistin-resistant (COLR-Ab) is an opportunistic pathogen commonly associated with nosocomial infections, and it is difficult to treat with current antibiotics. Therefore, new antimicrobial agents need to be developed for treatment. Based on this information, we investigated the antimicrobial, antibiofilm, and combination activities of -coumaric acid (-CA), ferulic acid (FA), and -methoxycinnamic acid (-MCA) against five COLR-Ab isolates.
View Article and Find Full Text PDFAnal Chem
January 2025
Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China.
A rapid, sensitive, and high-throughput sample preparation method is of paramount significance for proteomics analysis. Here, we report a fast, high-sensitivity MICROFASP method that is capable of completing sample preparation within 1.5 h, enhancing the throughput by over 13 times compared to the previous reports.
View Article and Find Full Text PDFACS Sens
January 2025
Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
It is crucial yet challenging to sensitively quantify low-abundance biomarkers in blood for early screening and diagnosis of various diseases. Herein, an analytical model of intra-mesopore immunoassay (IMIA) was proposed, which was competent to examine various biomarkers at the femtomolar level. The success is rooted in the design of an innovative superparamagnetic core-shell structure with FeO nanoparticles (NPs) at the core and hierarchically porous zeolitic imidazolate frameworks as a shell (FeO@HPZIF-8), achieved through a soft-template directed self-assembly coupled with confinement growth mechanism.
View Article and Find Full Text PDFBio Protoc
January 2025
Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Riken, 2-1 Hirosawa, Wako Saitama, Japan.
Cytosolic peptide:-glycanase (PNGase/NGLY1 in mammals), an amidase classified under EC:3.5.1.
View Article and Find Full Text PDFNat Commun
January 2025
Crick-GSK Biomedical LinkLabs, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, UK.
Identifying pharmacological probes for human proteins represents a key opportunity to accelerate the discovery of new therapeutics. High-content screening approaches to expand the ligandable proteome offer the potential to expedite the discovery of novel chemical probes to study protein function. Screening libraries of reactive fragments by chemoproteomics offers a compelling approach to ligand discovery, however, optimising sample throughput, proteomic depth, and data reproducibility remains a key challenge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!