In this work, we introduce a new method to regard the geometry in a structural similarity measure by approximating the conformational space of a molecule. Our idea is to break down the molecular conformation into the local conformations of neighbor atoms with respect to core atoms. This local geometry can be implicitly accessed by the trajectories of the neighboring atoms, which are emerge by rotatable bonds. In our approach, the physicochemical atomic similarity, which can be used in structured similarity measures, is augmented by a local flexibility similarity, which gives a rough estimate of the similarity of the local conformational space. We incorporated this new type of encoding the flexibility into the optimal assignment molecular similarity approach, which can be used as a pseudokernel in support vector machines. The impact of the local flexibility was evaluated on several published QSAR data sets. This lead to an improvement of the model quality on 9 out of 10 data sets compared to the unmodified optimal assignment kernel.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ci800329r | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!