PMD and PDL impairments in polarization division multiplexing signals with direct detection.

Opt Express

Key Laboratory of Optical Communication & Lightwave Technologies, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876, China.

Published: May 2009

We investigate polarization mode dispersion (PMD) and polarization dependent loss (PDL) impairments in polarization division multiplexing (PDM) signals with optical polarization demultiplexing and direct detection. We find that the time alignment between the bits in the two polarizations has a significant impact on the PMD impairments, and PMD impairments also depend on the bandwidth of PDM signals, whereas PDL impairments have little dependence on the relative time alignment between the two polarizations and the signal bandwidth. We show that with a proper configuration of the polarization demultiplexing, the PDL-induced crosstalk between the two polarizations can be completely eliminated. The combined effects of PMD and PDL are also studied, and we find that, in the presence of concatenated PMD and PDL, the impairment from one effect does not enhance that from the other.

Download full-text PDF

Source
http://dx.doi.org/10.1364/oe.17.007993DOI Listing

Publication Analysis

Top Keywords

pmd pdl
12
pdl impairments
12
impairments polarization
8
polarization division
8
division multiplexing
8
direct detection
8
pdm signals
8
polarization demultiplexing
8
time alignment
8
pmd impairments
8

Similar Publications

In this paper, we examine information theoretical properties of single-mode fibers in the presence of polarization-induced distortion effects. We derive some capacity results and further obtain several nonergodic achievable rates. In this work, however, mostly linear distortions are considered.

View Article and Find Full Text PDF

We propose a joint multi-polarization-effect tracking and equalization method based on two extended Kalman filters, which can cope with state of polarization (SOP) tracing, polarization demultiplexing, equalization for polarization dependent loss (PDL) and polarization mode dispersion (PMD) in PDM-M-QAM coherent optical communication system. The mathematical model of the proposed method is given and analyzed in detail. Through simulation, the proposed method is proved to be very effective in a 28 Gbaud/s PDM-16QAM system.

View Article and Find Full Text PDF

The explosive growth of the traffic between data centers has led to an urgent demand for high-performance short-reach optical interconnects with data rate beyond 100G per wavelength and transmission distance over hundreds of kilometers. Since direct detection (DD) provides a cost-efficient solution for short-reach interconnects, various advanced modulation formats have been intensively studied to improve the performance of DD for high-performance short-reach optical interconnects. In this paper, we report the recent progress on the advanced DD modulation formats that provide superior electrical spectral efficiency (SE) and transmission reach beyond that of simple direct modulation (DM) based direct detection (DM/DD).

View Article and Find Full Text PDF

OSNR monitoring for QPSK and 16-QAM systems in presence of fiber nonlinearities for digital coherent receivers.

Opt Express

August 2012

Photonics Research Centre, Department of Electrical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.

OSNR monitoring is indispensable for coherent systems to ensure robust, reliable network operation and potentially enable impairment-aware routing for future dynamic optical networks. In a long-haul transmission link with chromatic dispersion (CD) and fiber nonlinearity, it is difficult to distinguish between amplifier noise and fiber nonlinearity induced distortions from received signal distributions even after various transmission impairment compensation techniques, thus resulting in grossly inaccurate OSNR estimates. Based on the received signal distributions after carrier phase estimation (CPE), we propose to characterize the nonlinearity-induced amplitude noise correlation across neighboring symbols and incorporate such information into error vector magnitude (EVM) calculation to realize fiber nonlinearity-insensitive OSNR monitoring.

View Article and Find Full Text PDF

Impact of nonlinear and polarization effects in coherent systems.

Opt Express

December 2011

Bell Labs, Alcatel-Lucent, 791 Holmdel-Keyport Road, Holmdel, NJ 07733, USA.

Coherent detection with digital signal processing (DSP) significantly changes the ways impairments are managed in optical communication systems. In this paper, we review the recent advances in understanding the impact of fiber nonlinearities, polarization-mode dispersion (PMD), and polarization-dependent loss (PDL) in coherent optical communication systems. We first discuss nonlinear transmission performance of three coherent optical communication systems, homogeneous polarization-division-multiplexed (PDM) quadrature-phase-shift-keying (QPSK), hybrid PDM-QPSK and on/off keying (OOK), and PDM 16-ary quadrature-amplitude modulation (QAM) systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!