Cross-reactive T-cell receptors in tumor and paraneoplastic target tissue.

Arch Neurol

Institute of Clinical Neuroimmunology,University Hospital Grosshadern, Ludwig-Maximilians University, Munich, Germany.

Published: May 2009

Background: According to established criteria, paraneoplastic encephalomyelitis with adrenal neuroblastoma comprises a definite paraneoplastic neurologic syndrome.

Objective: To detect T-cell clones that cross-react against antigens shared between tumor and nervous system.

Design: Case study.

Setting: Academic research. Patient A 22-year-old woman having paraneoplastic encephalomyelitis with adrenal neuroblastoma.

Main Outcome Measures: We compared the T-cell receptor repertoires expressed in blood, cerebrospinal fluid, and neuroblastoma tumor tissue using complementary determining region 3 (CDR3) spectratyping and clone-specific polymerase chain reaction.

Results: The T-cell receptor repertoire in cerebrospinal fluid was narrow compared with that in tumor and blood. Four T-cell clones from different tissues had identical T-cell receptor beta chains. Remarkably, the chains showed identical amino acid sequences but different nucleotide sequences.

Conclusions: These T cells represent ontogenetically distinct clones but share functionally identical receptors. They recognize the same antigen in nervous system and tumor tissue and represent an attractive target for selective therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1001/archneurol.2009.56DOI Listing

Publication Analysis

Top Keywords

t-cell receptor
12
paraneoplastic encephalomyelitis
8
encephalomyelitis adrenal
8
t-cell clones
8
cerebrospinal fluid
8
tumor tissue
8
tumor
5
t-cell
5
cross-reactive t-cell
4
t-cell receptors
4

Similar Publications

Engineered Cellular Therapies for the Treatment of Thoracic Cancers.

Cancers (Basel)

December 2024

Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA.

Thoracic malignancies (lung cancers and malignant pleural mesothelioma) are prevalent worldwide and are associated with high morbidity and mortality. Effective treatments are needed for patients with advanced disease. Cell therapies are a promising approach to the treatment of advanced cancers that make use of immune effector cells that have the ability to mediate antitumor immune responses.

View Article and Find Full Text PDF

Development of Peptide Mimics of the Human Acetylcholine Receptor Main Immunogenic Region for Treating Myasthenia Gravis.

Int J Mol Sci

December 2024

Department of Neurology, Davis School of Medicine, University of California, 1515 Newton Court, Davis, CA 95618, USA.

We have designed and produced 39 amino acid peptide mimics of the and human acetylcholine receptors' (AChRs) main immunogenic regions (MIRs). These conformationally sensitive regions consist of three non-contiguous segments of the AChR α-subunits and are the target of 50-70% of the anti-AChR autoantibodies (Abs) in human myasthenic serum and in the serum of rats with a model of that disease, experimental autoimmune myasthenia gravis (EAMG), induced by immunizing the rats with the electric organ AChR. These MIR segments covalently joined together bind a significant fraction of the monoclonal antibodies (mAbs) raised in rats against electric organ AChR.

View Article and Find Full Text PDF

Flow cytometric (FC) immunophenotyping and T-cell receptor (TCR) gene rearrangement studies are essential ancillary methods for the characterisation of T-cell lymphomas. Traditional manual gating and polymerase chain reaction (PCR)-based analyses can be labour-intensive, operator-dependent, and have limitations in terms of sensitivity and specificity. The objective of our study was to investigate the efficacy of the Phenograph and t-SNE algorithms together with an antibody specific for the TCR β-chain constant region 1 (TRBC1) to identify monoclonal T-cell populations.

View Article and Find Full Text PDF

The Role of Bone Marrow Stromal Cell Antigen 2 (BST2) in the Migration of Dendritic Cells to Lymph Nodes.

Int J Mol Sci

December 2024

College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.

Bone marrow stromal antigen 2 (BST2) is a host-restriction factor that plays multiple roles in the antiviral defense of innate immune responses, including the inhibition of viral particle release from virus-infected cells. BST2 may also be involved in the endothelial adhesion and migration of monocytes, but its importance in the immune system is still unclear. Immune cell adhesion and migration are closely related to the initiation of immune responses.

View Article and Find Full Text PDF

Background: The adoptive cell transfer (ACT) of T cell receptor (TCR)-engineered T cells targeting the HLA-A2-restricted epitope NY-ESO-1 (A2/NY) has yielded important clinical responses against several cancers. A variety of approaches are being taken to augment tumor control by ACT including TCR affinity-optimization and T-cell coengineering strategies to address the suppressive tumor microenvironment (TME). Most TCRs of clinical interest are evaluated in immunocompromised mice to enable human T-cell engraftment and do not recapitulate the dynamic interplay that occurs with endogenous immunity in a treated patient.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!