In the presence of Mn(2+), an activity in a preparation of purified Bacillus subtilis RecN degrades single-stranded (ss) DNA with a 3' --> 5' polarity. This activity is not associated with RecN itself, because RecN purified from cells lacking polynucleotide phosphorylase (PNPase) does not show the exonuclease activity. We show here that, in the presence of Mn(2+) and low-level inorganic phosphate (P(i)), PNPase degrades ssDNA. The limited end-processing of DNA is regulated by ATP and is inactive in the presence of Mg(2+) or high-level P(i). In contrast, the RNase activity of PNPase requires Mg(2+) and P(i), suggesting that PNPase degradation of RNA and ssDNA occur by mutually exclusive mechanisms. A null pnpA mutation (DeltapnpA) is not epistatic with Delta recA, but is epistatic with DeltarecN and Delta ku, which by themselves are non-epistatic. The addA5, Delta recO, Delta recQ (Delta recJ), Delta recU and Delta recG mutations (representative of different epistatic groups), in the context of DeltapnpA, demonstrate gain- or loss-of-function by inactivation of repair-by-recombination, depending on acute or chronic exposure to the damaging agent and the nature of the DNA lesion. Our data suggest that PNPase is involved in various nucleic acid metabolic pathways, and its limited ssDNA exonuclease activity plays an important role in RecA-dependent and RecA-independent repair pathways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2709576 | PMC |
http://dx.doi.org/10.1093/nar/gkp314 | DOI Listing |
NPJ Biofilms Microbiomes
January 2025
Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, Zhejiang, China.
Dispersal plays a crucial role in the development and ecology of biofilms. While extensive studies focused on elucidating the molecular mechanisms governing this process, few have characterized the associated temporal changes in composition and structure. Here, we employed solid-state nuclear magnetic resonance (NMR) techniques to achieve time-resolved characterization of Bacillus subtilis biofilms over a 5-day period.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China. Electronic address:
This study is the first to use synthetic biological omics technology to analyze the molecular mechanism underlying deep degradation of TNT, to construct an artificial transformation system to create engineered Escherichia coli bacteria, and to use Bacillus subtilis as an expression host to explore the mechanism driving the reshaping of the deep degradation platform on microecology. Nitroreductase family protein, 2-oxoacid:acceptor oxidoreductase, NADPH-cytochrome P450 reductase, monooxygenase, ring-cleaving dioxygenase, and RraA family protein significantly participated in the reduction-hydroxylation-ring opening cleavage of TNT, achieving deep transformation of TNT to produce pyruvic acid and other products that entered the cellular metabolic cycle. The key toxic metabolic pathways of TNT, 2,4-diamino-6-nitrotoluene, 2,4,6-triaminotoluene, and 2,4,6-trihydroxytoluene are pantothenate and CoA biosynthesis.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
is one of the commonly used hosts for heterologous enzyme expression, depending on media rich in carbon, nitrogen, and phosphate sources for optimal growth and enzyme production. Interestingly, our investigation of maltotetraose-forming amylase, a key enzyme for efficient maltotetraose synthesis, revealed that phosphate limitation significantly enhances the growth rate and production of heterologous enzymes in recombinant . Under phosphate-limited conditions in a 15 L fermenter, the enzyme activity reached 679.
View Article and Find Full Text PDFmBio
January 2025
Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA.
The 55-carbon isoprenoid, undecaprenyl-phosphate (UndP), is a universal carrier lipid that ferries most glycans and glycopolymers across the cytoplasmic membrane in bacteria. In addition to peptidoglycan precursors, UndP transports O-antigen, capsule, wall teichoic acids, and sugar modifications. How this shared but limited lipid is distributed among competing pathways is just beginning to be elucidated.
View Article and Find Full Text PDFJ Pestic Sci
November 2024
Bacillus Tech LLC.
The Cry1Fa insecticidal protein from (Bt) was expressed on the surface of (Bs) spores to create transgenic Bs spores referred to as Spore-Cry1Fa. Cry1Fa, along with its leader sequence, was connected to the carboxyl end of a Bs spore outercoat protein, CotC, through a flexible linker. The Arg-27 residue of the Cry1Fa protein was mutated to Leu to prevent detachment from the spores due to protease digestion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!