Generation of distinct ventral neuronal subtypes in the developing spinal cord requires Shh signaling mediated by the Gli family of transcription factors. Genetic studies of Shh(-/-);Gli3(-/-) double mutants indicated that the inhibition of Gli3 repressor activity by Shh is sufficient for the generation of different neurons including motor neurons. In this study, we show that although ventral neural progenitors are initiated in normal numbers in Shh(-/-);Gli3(-/-) mutants, the subsequent appearance of motor neuron progenitors shows a approximately 20-hour lag, concomitant with a delay in the activation of a pan-neuronal differentiation program and cell cycle exit of ventral neural progenitors. Accordingly, the Shh(-/-);Gli3(-/-) mutant spinal cord exhibits a delay in motor neuron differentiation and an accumulation of a ventral neural progenitor pool. The requirement of Shh and Gli3 activities to promote the timely appearance of motor neuron progenitors is further supported by the analysis of Ptch1(-/-) mutants, in which constitutive Shh pathway activity is sufficient to elicit ectopic and premature differentiation of motor neurons at the expense of ventral neural progenitors. Taken together, our analysis suggests that, beyond its well established dorso-ventral patterning function through a Gli3-derepression mechanism, Shh signaling is additionally required to promote the timely appearance of motor neuron progenitors in the developing spinal cord.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2703695 | PMC |
http://dx.doi.org/10.1016/j.ydbio.2009.05.539 | DOI Listing |
Dev Reprod
December 2024
Department of Chemical and Biological Engineering, Hanbat National University, Daejeon 34158, Korea.
Maintenance of neural progenitors requires Notch signaling in vertebrate development. Previous study has shown that Jagged2-mediated Notch signaling maintains proliferating neural progenitors in the ventral spinal cord. However, components for Jagged-mediated signaling remain poorly defined during late neurogenesis.
View Article and Find Full Text PDFCureus
December 2024
Department of Physiology, Touro College of Osteopathic Medicine, Middletown, USA.
Down syndrome (DS) is a genetic intellectual disorder caused by trisomy of chromosome 21 (Hsa21) and presents with a variety of phenotypes. The correlation between the chromosomal abnormality and the resulting symptoms is unclear, partly due to the spectrum of impairments observed. However, it has been determined that trisomy 21 contributes to neurodegeneration and impaired neurodevelopment resulting from decreased neurotransmission, neurogenesis, and synaptic plasticity.
View Article and Find Full Text PDFBurns Trauma
January 2025
The Orthopaedic Center, The Affiliated Wenling Hospital of Wenzhou Medical University (The First People's Hospital of Wenling), 333 Chuanan Road, Chengxi Street, Wenling City, Zhejiang Province 317500, China.
Background: Neuronal structure is disrupted after spinal cord injury (SCI), causing functional impairment. The effectiveness of exercise therapy (ET) in clinical settings for nerve remodeling post-SCI and its underlying mechanisms remain unclear. This study aims to explore the effects and related mechanisms of ET on nerve remodeling in SCI rats.
View Article and Find Full Text PDFBMJ Med
January 2025
Laboratory Medicine - Neurochemistry, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.
Exp Biol Med (Maywood)
January 2025
Institute of Clinical Medicine, University Tartu, Tartu, Estonia.
Blood-based biomarkers for motor neuron disease are needed for better diagnosis, progression prediction, and clinical trial monitoring. We used whole blood-derived total RNA and performed whole transcriptome analysis to compare the gene expression profiles in (motor neurone disease) MND patients to the control subjects. We compared 42 MND patients to 42 aged and sex-matched healthy controls and described the whole transcriptome profile characteristic for MND.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!