Differences in the expression of cochlear proteins are likely to affect the susceptibility of different animal models to specific types of auditory pathology. However, little is currently known about proteins that are abundantly expressed in inner ear. Identification of these proteins may facilitate the search for biomarkers of susceptibility and intervention targets. To begin to address this issue, we analyzed cochlear protein profiles of three strains of rats, Wistar, Sprague-Dawley, and Fischer 344, using a broad spectrum antibody microarray. Normal hearing function of the animals was ascertained using distortion product otoacoustic emissions (DPOAE). Of 725 proteins screened in whole cochlea, more than 80% were detected in all three strains. However, there were striking differences in the levels at which they occur. Among 213 proteins expressed at levels>or=2 fold of actin, only 7.5% were detected at these levels in all three strains. Myosin light chain kinase (MLCK) was immunolocalized in cuticular plate of outer hair cells (OHC) while mitogen activated protein (MAP) kinase-extracellular-signal regulated kinase1/2 (ERK1/2) was detected as foci in OHC, pillar cells, strial marginal cells, and fibroblasts of spiral ligament. A review of literature indicated that the expression of 7 (44%) of these 16 proteins were detected for the first time in the inner ear, although there were implications of the presence of some of these proteins. One of these abundant, but unstudied, proteins, MAP kinase activated protein kinase2 (MAPKAPK2), shows strong immunolabeling in pillar cells and inner hair cells (IHC). There was moderate MAPKAPK2 labeling in OHC, supporting cells, neurons, and marginal, intermediate, and basal cells. The current study provides the first, large cochlear protein profile of multiple rat strains. The diversity in expression of abundant proteins in these strains may contribute to differences in susceptibility of these strains to aging, noise, or ototoxic drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/pr900222cDOI Listing

Publication Analysis

Top Keywords

cochlear protein
12
three strains
12
proteins
9
protein profiles
8
wistar sprague-dawley
8
sprague-dawley fischer
8
fischer 344
8
normal hearing
8
hearing function
8
inner ear
8

Similar Publications

Myosin-VIIA (MYO7A) is an unconventional myosin responsible for syndromic (Usher 1B) or nonsyndromic forms of deafness in humans when mutated. In the cochlea, MYO7A is expressed in hair cells, where it is believed to act as the motor protein tensioning the mechanoelectrical transducer (MET) channels, thus setting their resting open probability (). However, direct evidence for this unique role for an unconventional myosin in mature hair cells is lacking.

View Article and Find Full Text PDF
Article Synopsis
  • Sensorineural hearing loss (SNHL) results from impaired cochlear function and is influenced by genetics, noise exposure, medications, and aging.
  • The role of inflammation, oxidative stress, and processes like apoptosis in SNHL development is acknowledged, but the detailed mechanisms are still unclear.
  • Recent research highlights that endoplasmic reticulum stress (ERS) and the associated cellular responses are significant in the onset and progression of SNHL, potentially offering new avenues for treatment.
View Article and Find Full Text PDF

Autoimmune inner ear disease (AIED) is a rare condition characterized by immune-mediated damage to the inner ear, leading to progressive sensorineural hearing loss (SNHL) and vestibular symptoms such as vertigo and tinnitus. This study investigates the pathogenesis and therapeutic strategies for AIED through the analysis of three cases with different underlying autoimmune disorders: rheumatoid arthritis, relapsing polychondritis, and IgG4-related disease. The etiology of AIED involves complex immunopathological mechanisms, including molecular mimicry and the "bystander effect," with specific autoantibodies, such as those against heat shock protein 70 (HSP70), playing a potential role in cochlear damage.

View Article and Find Full Text PDF

Thiamine responsive megaloblastic anemia (TRMA), also known as Roger's syndrome, is an exceptionally rare autosomal recessive disorder stemming from mutations in the SLC19A2 gene responsible for encoding a thiamine carrier protein. This syndrome manifests as the classic triad of megaloblastic anemia, sensorineural hearing loss, and diabetes mellitus. Here, we present the case of a one-and-a-half-year-old male infant born to non-consanguineous parents in India, a region where TRMA cases are seldom reported.

View Article and Find Full Text PDF

The use of optogenetic tools offers an excellent method for spatially and temporally regulated gene and protein expression in cell therapeutic approaches. This could be useful as a concomitant therapeutic measure, especially in small body compartments such as the inner ear, for example, during cochlea implantation, to enhance neuronal cell survival and function. Here, we used the blue light activatable CRY2/CIB system to induce transcription of brain-derived neurotrophic factor (BDNF) in human cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!