The cells and tissues of the intestinal tract are subjected to a constant onslaught of antigenic challenge from both beneficial and harmful pathogens. Despite this constant stimulation, the host is able to maintain a relatively stable environment, often referred to as 'a controlled state of inflammation'. In patients with chronic inflammatory bowel disease, this controlled state of inflammation is lost. The cause of this loss of control is not fully understood, but there is emerging research interest in positive and negative costimulatory pathways as potential targets for modulating the dysregulation. This review describes the B7 and B7-like butyrophilin families of costimulatory molecules, with an emphasis on the role of costimulation in intestinal inflammation.
Download full-text PDF |
Source |
---|
Front Immunol
January 2025
Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China.
Background: Chimeric antigen receptor T (CAR-T) cell therapy is more effective in relapsed or refractory diffuse large B cell lymphoma (DLBCL) than other therapies, but a high proportion of patients relapse after CAR-T cell therapy owing to antigen escape, limited persistence of CAR-T cells, and immunosuppression in the tumor microenvironment. CAR-T cell exhaustion is a major cause of relapse. Epigenetic modifications can regulate T cell activation, maturation and depletion; they can be applied to reduce T cell depletion, improve infiltration, and promote memory phenotype formation to reduce relapse after CAR-T cell therapy.
View Article and Find Full Text PDFThe U.S. opioid epidemic is an extraordinary public health crisis that started in 1990 and significantly accelerated in the last decade.
View Article and Find Full Text PDFJID Innov
March 2025
Department of Dermatology, University Hospital of Zurich, University of Zurich, Schlieren, Switzerland.
In cutaneous melanoma, epigenetic dysregulation is implicated in drug resistance and tumor immune escape. However, the epigenetic mechanisms that influence immune escape remain poorly understood. To elucidate how epigenetic dysregulation alters the expression of surface proteins that may be involved in drug targeting and immune escape, we performed a 3-dimensional surfaceome screen in primary melanoma cultures and identified the DNA-methyltransferase inhibitor decitabine as significantly upregulating the costimulatory molecule ICAM-1.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
Background: A number of immunotherapeutic approaches have been developed and are entering the clinic. Bispecific antibodies (BsAbs) are one of these modalities and induce robust efficacy by endogenous T cells in several hematological malignancies. However, most of the treated patients experience only a temporary benefit.
View Article and Find Full Text PDFVaccines (Basel)
January 2025
Laboratory of Immunopathology, Butantan Institute, São Paulo 05585-000, Brazil.
: Cationic polymers were shown to assemble with negatively charged proteins yielding nanoparticles (NPs). Poly-diallyl-dimethyl-ammonium chloride (PDDA) combined with ovalbumin (OVA) yielded a stable colloidal dispersion (OVA/PDDA-NPs) eliciting significant anti-OVA immune response. Dendritic cells (DCs), as sentinels of foreign antigens, exert a crucial role in the antigen-specific immune response.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!