Immunoaffinity purification and characterization of glyceraldehyde-3-phosphate dehydrogenase from human erythrocytes.

Acta Biochim Biophys Sin (Shanghai)

Laboratoire de Biochimie et Biologie Moleculaire, Universite Hassan II-Ain Chock, Faculte des Sciences Ain Chock, km 8 route d'El Jadida BP. 5366, Maarif, Casablanca, Morocco.

Published: May 2009

A new procedure utilizing immunoaffinity column chromatography has been used for the purification of glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) from human erythrocytes. The comparison between this rapid method (one step) and the traditional procedure including ammonium sulfate fractionation followed by Blue Sepharose CL-6B chromatography shows that the new method gives a highest specific activity with a highest yield in a short time. The characterization of the purified GAPDH reveals that the native enzyme is a homotetramer of ~150 kDa with an absolute specificity for the oxidized form of nicotinamide adenine dinucleotide (NAD(+)). Western blot analysis using purified monospecific polyclonal antibodies raised against the purified GAPDH showed a single 36 kDa band corresponding to the enzyme subunit. Studies on the effect of temperature and pH on enzyme activity revealed optimal values of about 43 degrees C and 8.5, respectively. The kinetic parameters were also calculated: the Vmax was 4.3 U/mg and the Km values against G3P and NAD(+) were 20.7 and 17.8 muM, respectively. The new protocol described represents a simple, economic, and reproducible tool for the purification of GAPDH and can be used for other proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1093/abbs/gmp026DOI Listing

Publication Analysis

Top Keywords

glyceraldehyde-3-phosphate dehydrogenase
8
human erythrocytes
8
purified gapdh
8
immunoaffinity purification
4
purification characterization
4
characterization glyceraldehyde-3-phosphate
4
dehydrogenase human
4
erythrocytes procedure
4
procedure utilizing
4
utilizing immunoaffinity
4

Similar Publications

Background/aim: L. () is an aromatic medicinal species with important nutraceutical potential, having rosmarinic acid (RA) as one of its main metabolites. The present study aims to evaluate the effects of an extract obtained from the leaves of this species and of its main metabolite in improving the streptozotocin-induced damage of hearts and aorta of diabetic rats.

View Article and Find Full Text PDF

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an enzyme widely involved in glycolysis in animal cells and in non-metabolic processes, including apoptosis and the regulation of gene expression. GAPDH is a ubiquitous protein that plays a pivotal role in plant metabolism and handling of stress responses. However, its function in plant stress resistance remains unknown.

View Article and Find Full Text PDF

Antibiotic resistance has been and remains a major problem in our society. The main solution to this problem is to search and study the mechanisms of antibiotic action. Many groups of secondary metabolites, including antimicrobial ones, are produced by the phylum.

View Article and Find Full Text PDF

Background: Larvae development is a critical step in aquaculture, yet the development of immune and stress responses during this early phase of life is not well understood. Snapper is a species that has been selected as a candidate for aquaculture in New Zealand.

Methods: In this study we explore a set of 18 genes identified as potentially being involved in the stress and immune responses of snapper larvae during the first 30 days of development.

View Article and Find Full Text PDF

Objective: To elucidate the association between the changes in intracellular metabolism in the early stage of B cell activation and systemic lupus erythematosus (SLE) pathogenesis.

Methods: CD19 or CD19CD27 (naïve) cells from the peripheral blood of healthy controls and lupus patients were cultured under different stimuli. The changes in intracellular metabolism and signalling pathways in these cells were evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!