Inflammation and oxidative stress are pathogenic mediators of many diseases, but molecules that could be therapeutic targets remain elusive. Inflammation and matrix degradation in the vasculature are crucial for abdominal aortic aneurysm (AAA) formation. Cyclophilin A (CypA, encoded by Ppia) is highly expressed in vascular smooth muscle cells (VSMCs), is secreted in response to reactive oxygen species (ROS) and promotes inflammation. Using the angiotensin II (AngII)-induced AAA model in Apoe-/- mice, we show that Apoe-/-Ppia-/- mice are completely protected from AngII-induced AAA formation, in contrast to Apoe-/-Ppia+/+ mice. Apoe-/-Ppia-/- mice show decreased inflammatory cytokine expression, elastic lamina degradation and aortic expansion. These features were not altered by reconstitution of bone marrow cells from Ppia+/+ mice. Mechanistic studies showed that VSMC-derived intracellular and extracellular CypA are required for ROS generation and matrix metalloproteinase-2 activation. These data define a previously undescribed role for CypA in AAA formation and suggest CypA as a new target for treating cardiovascular disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2704983 | PMC |
http://dx.doi.org/10.1038/nm.1958 | DOI Listing |
Life Metab
February 2025
Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China.
Abdominal aortic aneurysm (AAA) is strongly correlated with obesity, partially due to the abnormal expansion of abdominal perivascular adipose tissue (PVAT). Cell death-inducing DNA fragmentation factor-like effector C (CIDEC), also known as fat-specific protein 27 (FSP27) in rodents, is specifically expressed in adipose tissue where it mediates lipid droplet fusion and adipose tissue expansion. Whether and how CIDEC/FSP27 plays a role in AAA pathology remains elusive.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Department of Infection Biology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan.
synthesizes aromatic amino acids (AAAs) through the common pathway to produce the precursor, chorismate, and the three terminal pathways to convert chorismate into Phe, Tyr, and Trp. also imports exogenous AAAs through five transporters. GcvB small RNA post-transcriptionally regulates more than 50 genes involved in amino acid uptake and biosynthesis in , but the full extent of GcvB regulon is still underestimated.
View Article and Find Full Text PDFJCI Insight
January 2025
Section of Vascular Surgery, Department of Surgery, and.
Abdominal aortic aneurysms (AAA) are a life-threatening cardiovascular disease for which there is a lack of effective therapy preventing aortic rupture. During AAA formation, pathological vascular remodeling is driven by vascular smooth muscle cell (VSMC) dysfunction and apoptosis, for which the mechanisms regulating loss of VSMCs within the aortic wall remain poorly defined. Using single-cell RNA-Seq of human AAA tissues, we identified increased activation of the endoplasmic reticulum stress response pathway, PERK/eIF2α/ATF4, in aortic VSMCs resulting in upregulation of an apoptotic cellular response.
View Article and Find Full Text PDFThe plant shikimate pathway directs a significant portion of photosynthetically assimilated carbon into the downstream biosynthetic pathways of aromatic amino acids (AAA) and aromatic natural products. 3-Deoxy-d--heptulosonate 7-phosphate (DAHP) synthase (hereafter DHS) catalyzes the first step of the shikimate pathway, playing a critical role in controlling the carbon flux from central carbon metabolism into the AAA biosynthesis. Previous biochemical studies suggested the presence of manganese- and cobalt-dependent DHS enzymes (DHS-Mn and DHS-Co, respectively) in various plant species.
View Article and Find Full Text PDFJ Endocrinol Invest
January 2025
Department of Medicine (DIMED), University of Padova, Padua, Italy.
Purpose: A paradoxical increase in GH after oral glucose load (GH-Par) characterizes about one-third of acromegaly patients and is associated with a better response to first-generation somatostatin receptor ligands (fg-SRLs). Pasireotide is typically considered as a second-/third-line treatment. Here, we investigated the predictive role of GH-Par in pasireotide response and adverse event development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!