In this study, we tested whether communities of arbuscular mycorrhizal (AM) fungi associated with roots of plant species forming vegetative cover as well as some soil parameters (amounts of phosphatase and glomalin-related soil protein, microbial biomass C and N concentrations, amount of P available, and aggregate stability) were affected by different amounts (control, 6.5 kg m(-2), 13.0 kg m(-2), 19.5 kg m(-2), and 26.0 kg m(-2)) of an urban refuse (UR) 19 years after its application to a highly eroded, semiarid soil. The AM fungal small-subunit (SSU) rRNA genes were subjected to PCR, cloning, single-stranded conformation polymorphism analysis, sequencing, and phylogenetic analyses. One hundred sixteen SSU rRNA sequences were analyzed, and nine AM fungal types belonging to Glomus groups A and B were identified: three of them were present in all the plots that had received UR, and six appeared to be specific to certain amendment doses. The community of AM fungi was more diverse after the application of the different amounts of UR. The values of all the soil parameters analyzed increased proportionally with the dose of amendment applied. In conclusion, the application of organic wastes enhanced soil microbial activities and aggregation, and the AM fungal diversity increased, particularly when a moderate dose of UR (13.0 kg m(-2)) was applied.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2704833 | PMC |
http://dx.doi.org/10.1128/AEM.00316-09 | DOI Listing |
Microorganisms
December 2024
Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil.
is a halophytic pantropical invasive fern growing in mangroves and swamps. Its association with arbuscular mycorrhizal fungi (AMF) has been reported in Asia. AMF and their symbiosis (AM) commonly colonise the absorption organs of terrestrial plants worldwide.
View Article and Find Full Text PDFMicroorganisms
November 2024
State Key Laboratory of Nutrient Use and Management, Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
Amid escalating challenges from global climate change and increasing environmental degradation, agricultural systems worldwide face a multitude of abiotic stresses, including drought, salinity, elevated temperatures, heavy metal pollution, and flooding. These factors critically impair crop productivity and yield. Simultaneously, biotic pressures such as pathogen invasions intensify the vulnerability of agricultural outputs.
View Article and Find Full Text PDFMicroorganisms
November 2024
State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China.
Exotic plants can selectively recruit beneficial microorganisms, such as arbuscular mycorrhizal fungi (AMFs) and spp., during their invasion process to enhance growth and competitiveness by improving nutrient absorption and strengthening defense capabilities against herbivores. However, research in the context of invasive plants remains limited.
View Article and Find Full Text PDFMicroorganisms
November 2024
Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
Diverse exogenous nitrogen (N) sources have a considerable impact on microbial community structure in terrestrial ecosystems. Legume plants and N deposition can relieve N limitations and increase net primary productivity. However, the differences in their effects on soil microbial communities remain unclear.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
Silicon (Si) and arbuscular mycorrhizal fungi (AMF) increase plant resistance to various environmental stresses, including heavy metal (and metalloid) toxicity. Although Si and AMF each independently enhance plant tolerance, the nature of their interactions and their combined impacts on nutrient uptake, especially in the context of toxic elements such as arsenic (As), remains to be elucidated. This study investigated AMF-mediated regulation of plant nutrient uptake under As stress using rice, a model Si-accumulating plant.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!