A correlation of flux through a silicone membrane with flux through hairless mouse skin and human skin in vitro.

Int J Pharm

Department of Medicinal Chemistry, University of Florida, P.O. Box 100485, Gainesville, FL 32610, USA.

Published: May 2009

The maximum fluxes of 32 prodrugs and parabens through polydimethylsiloxane membranes from water (EXP log J(MPAQ)) have been correlated with the maximum flux of the same prodrugs and parabens through hairless mouse skin from water (EXP log J(MMAQ)): EXP log J(MMAQ)=0.608 EXP log J(MPAQ)-0.636, r(2)=0.743. The average of the absolute values for the differences between the EXP log J(MMAQ) and the log J(MMAQ) calculated from EXP log J(MPAQ) (Delta log J(MMAQ)) was 0.227 log units. Similarly the maximum fluxes of 11 unrelated permeants through human skin from water (EXP log J(MHAQ)) was correlated with the EXP log J(MPAQ) for the same permeants: EXP log J(MHAQ)=0.516 EXP log J(MPAQ)-0.922, r(2)=0.82 and Delta log J(MHAQ)=0.252 log units. Since the best fit of the databases for EXP log J(MPAQ), log J(MMAQ) and log J(MHAQ) was to the Roberts-Sloan (RS) model, and the dependency of RS on a balance in lipid and aqueous solubility for optimization of topical delivery has been established, the present correlation suggests that the flux through a silicone can be used to predict flux through mouse or human and that the physicochemical properties that lead to optimized flux through one membrane will lead to optimized flux through the others.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2009.02.004DOI Listing

Publication Analysis

Top Keywords

exp log
44
log jmmaq
20
log
18
log jmpaq
16
water exp
12
exp
11
flux silicone
8
hairless mouse
8
mouse skin
8
human skin
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!