High levels of calcium-independent phospholipase A(2) (iPLA(2)) are present in the striatum and cerebral cortex [W.Y. Ong, J.F. Yeo, S.F. Ling, A.A. Farooqui, Distribution of calcium-independent phospholipase A(2) (iPLA(2)) in monkey brain, J. Neurocytol. 34 (2005) 447-458], and several clinical investigations have suggested a possible role of altered iPLA(2) activity in neurodegenerative and psychiatric disorders. The present study was carried out to elucidate a possible effect of PLA(2) on prepulse inhibition (PPI) of the acoustic startle reflex. Rats that received intraperitoneal injection of the non-specific PLA(2) inhibitor, quinacrine, showed significantly decreased PPI at 76, 80, and 84dB, compared to saline injected controls. In addition, rats that received intrastriatal injection of antisense oligonucleotide to iPLA(2) showed significant reduction in PPI at prepulse intensities of 76 and 84dB compared to scrambled sense injected controls. Together, these findings point to a role of PLA(2) in PPI of the auditory startle reflex and sensorimotor gating.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2009.01.069DOI Listing

Publication Analysis

Top Keywords

startle reflex
12
prepulse inhibition
8
auditory startle
8
reflex rats
8
calcium-independent phospholipase
8
phospholipase ipla2
8
rats received
8
84db compared
8
injected controls
8
role phospholipase
4

Similar Publications

Background: Stiff Person Spectrum Disorders (SPSD) are classically defined by the presence of muscle stiffness, spasms and hyperactivity of the central nervous system. There is a notable correlation between neurophysiological features and the clinical hallmark of SPSD, which has greatly encouraged the use of these techniques for diagnostic purposes. Besides, electrophysiological techniques allow for a functional evaluation of the 'hyperactivity of the CNS', thus offering the opportunity to clarify the mechanisms underlying this disorder.

View Article and Find Full Text PDF

Transcutaneous auricular vagus nerve stimulation (taVNS) has been tested as a strategy to facilitate fear extinction learning based on the hypothesis that taVNS increases central noradrenergic activity. Four studies out of six found taVNS to enhance extinction learning especially at the beginning of extinction. Facilitatory effects of taVNS were mainly observed in US expectancy, less in fear-potentiated startle (FPS), and not in the skin conductance response (SCR).

View Article and Find Full Text PDF

Purpose: Metabolic dysfunction-associated steatohepatitis (MASH) is a prevalent disease caused by high fat and high cholesterol intake, which leads to systemic deterioration. The aim of this research is to conduct a psychobiological exploration of MASH in adult male rats.

Methods: Subjects who were administered a high-fat and high-cholesterol diet for 14 weeks.

View Article and Find Full Text PDF

Prepulse inhibition (PPI) refers to the phenomenon in which a weak sensory stimulus before a strong one significantly reduces the startle reflex caused by the strong stimulus. Perceptual spatial separation, a phenomenon where auditory cues from the prepulse and background noise are distinguished in space, has been shown to enhance PPI. This study aims to investigate the neural modulation mechanisms of PPI by the spatial separation between the prepulse stimulus and background noise, particularly in the deep superior colliculus (deepSC).

View Article and Find Full Text PDF

Background: An elevated startle reflex in anticipation of unpredictable threat has been associated with concurrent anxiety disorders. However, only one study to date has examined whether startle potentiation in anticipation of unpredictable threat predicts the development of anxiety disorders.

Method: In a community sample of 309 adolescents, we examined whether the startle reflex in anticipation of predictable or unpredictable threat at age 15 predicted onset of generalized anxiety disorder (GAD) and social anxiety disorder (SAD) at age 18.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!