The increased synthesis of building blocks of IPP (isopentenyl diphosphate) and DMAPP (dimethylallyl diphosphate) through metabolic engineering is a way to enhance the production of carotenoids. Using E. coli as a host, IPP and DMAPP supply can be increased significantly through the introduction of foreign MVA (mevalonate) pathway into it. The MVA pathway is split into two parts with the top and bottom portions supplying mevalonate from acetyl-CoA, and IPP and DMAPP from mevalonate, respectively. The bottom portions of MVA pathway from Streptococcus pneumonia, Enterococcus faecalis, Staphylococcus aureus, Streptococcus pyogenes and Saccharomyces cerevisiae were compared with exogenous mevalonate supplementation for beta-carotene production in recombinant Escherichia coli harboring beta-carotene synthesis genes. The E. coli harboring the bottom MVA pathway of S. pneumoniae produced the highest amount of beta-carotene. The top portions of MVA pathway were also compared and the top MVA pathway of E. faecalis was found out to be the most efficient for mevalonate production in E. coli. The whole MVA pathway was constructed by combining the bottom and top portions of MVA pathway of S. pneumoniae and E. faecalis, respectively. The recombinant E. coli harboring the whole MVA pathway and beta-carotene synthesis genes produced high amount of beta-carotene even without exogenous mevalonate supplementation. When comparing various E. coli strains - MG1655, DH5alpha, S17-1, XL1-Blue and BL21 - the DH5alpha was found to be the best beta-carotene producer. Using glycerol as the carbon source for beta-carotene production was found to be superior to glucose, galactose, xylose and maltose. The recombinant E. coli DH5alpha harboring the whole MVA pathway and beta-carotene synthesis genes produced beta-carotene of 465mg/L at glycerol concentration of 2% (w/v).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiotec.2009.01.008DOI Listing

Publication Analysis

Top Keywords

mva pathway
36
portions mva
12
coli harboring
12
beta-carotene synthesis
12
synthesis genes
12
pathway
11
beta-carotene
10
mva
10
mevalonate pathway
8
coli
8

Similar Publications

Identification of 3-hydroxy-3-methylglutaryl monoacyl-coenzyme A reductase (HMGR) associated with the synthesis of terpenoids in Santalum album L.

Gene

December 2024

Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou 510650, China. Electronic address:

Santalum album is an economically important plant in the craft, spices and medicine industries. The main chemical constituents found in sandalwood essential oils are sesquiterpenes. 3-Hydroxy-3-methylglutaryl monoacyl-coenzyme A reductase (HMGR) is one of the rate-limiting enzymes required for the synthesis of sandal sesquiterpenes, but there are no studies on the HMGR gene in S.

View Article and Find Full Text PDF

[Study on differences in metabolism and transcription of ginseng seeds after morphological post ripening by space flight].

Zhongguo Zhong Yao Za Zhi

September 2024

Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences Changchun 130112, China College of Pharmacy and Biological Engineering, Chengdu University Chengdu 610106, China.

To explore the difference in metabolism and transcription between seeds experiencing space flight and ground seeds after morphological post ripening, this study utilized ginseng seeds experiencing space flight and ground seeds as materials. Metabolomics and transcriptomics analyses were conducted using ultra-high performance liquid chromatography-mass spectrometry(UPLC-MS) and high-throughput transcriptome sequencing(RNA-seq) technologies, so as to identify differential terpenoid metabolites, differential endogenous hormones, and differentially expressed genes. The results showed that through metabolomics analysis, a total of 22 differential terpenoid metabolites were identified in the experimental and control groups, including chikusetsusaponin FK_7, ginsenoside F_2, ginseno-side K, majoroside R_1, ginsenoside Re_5, 12-hydroxyabietic acid, etc; through transcriptomics analysis, 15 differential terpenoid metabolism-related differentially expressed genes were identified in the experimental and control groups, including FCase, AACT, PMK, etc, and these genes were integrated into the pathway based on the MEP and MVA.

View Article and Find Full Text PDF

Constructing High-Yielding for (-)-α-Bisabolol Production Based on the Exogenous Haloarchaeal MVA Pathway and Endogenous Molecular Chaperones.

J Agric Food Chem

December 2024

The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.

(-)-α-Bisabolol exhibits analgesic, anti-inflammatory, and skin-soothing properties and is widely applied in the cosmetic and pharmaceutical industries. The use of plant essential oil distillation or chemical synthesis to produce (-)-α-bisabolol is both inefficient and unsustainable. Currently, the microbial production of (-)-α-bisabolol mainly relies on and as chassis strains; however, high concentrations of (-)-α-bisabolol have certain toxicity to the strain.

View Article and Find Full Text PDF

Reprograming the Carbon Metabolism of Yeast for Hyperproducing Mevalonate, a Building Precursor of the Terpenoid Backbone.

J Agric Food Chem

December 2024

Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.

Utilization of microbial hosts to produce natural plant products is regarded as a promising and sustainable approach. However, achieving highly efficient production of terpenoids using microorganisms remains a significant challenge. Here, mevalonate, a building block of terpenoids, was used as a demo product to explore the potential metabolic constraints for terpenoid biosynthesis in .

View Article and Find Full Text PDF

Herbal Multiomics Provide Insights into Gene Discovery and Bioproduction of Triterpenoids by Engineered Microbes.

J Agric Food Chem

December 2024

State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.

Triterpenoids are natural products found in plants that exhibit industrial and agricultural importance. Triterpenoids are typically synthesized through two main pathways: the mevalonate (MVA) and methylerythritol 4-phosphate (MEP) pathways. They then undergo structural diversification with the help of squalene cyclases (OSCs), cytochrome P450 monooxygenases (P450s), UDP glycosyltransferases (UGTs), and acyltransferases (ATs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!