Structure-based discovery of dengue virus protease inhibitors.

Antiviral Res

Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, 77555, United States.

Published: June 2009

Dengue virus belongs to the family Flaviviridae and is a major emerging pathogen for which the development of vaccines and antiviral therapy has seen little success. The NS3 viral protease is a potential target for antiviral drugs since it is required for virus replication. The goal of this study was to identify novel dengue virus (type 2; DEN2V) protease inhibitors for eventual development as effective anti-flaviviral drugs. The EUDOC docking program was used to computationally screen a small-molecule library for compounds that dock into the P1 pocket and the catalytic site of the DEN2V NS3 protease domain apo-structure [Murthy, K., Clum, S., Padmanabhan, R., 1999. Crystal structure and insights into interaction of the active site with substrates by molecular modeling and structural analysis of mutational effects. J. Biol. Chem. 274, 5573-5580] and the Bowman-Birk inhibitor-bound structure [Murthy, K., Judge, K., DeLucas, L., Padmanabhan, R., 2000. Crystal structure of dengue virus NS3 protease in complex with a Bowman-Birk inhibitor: implications for flaviviral polyprotein processing and drug design. J. Mol. Biol. 301, 759-767]. The top 20 computer-identified hits that demonstrated the most favorable scoring "energies" were selected for in vitro assessment of protease inhibition. Preliminary protease activity assays demonstrated that more than half of the tested compounds were soluble and exhibited in vitro inhibition of the DEN2V protease. Two of these compounds also inhibited viral replication in cell culture experiments, and thus are promising compounds for further development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2680748PMC
http://dx.doi.org/10.1016/j.antiviral.2009.02.190DOI Listing

Publication Analysis

Top Keywords

dengue virus
16
protease
8
protease inhibitors
8
den2v protease
8
ns3 protease
8
crystal structure
8
virus
5
structure-based discovery
4
dengue
4
discovery dengue
4

Similar Publications

Dengue Virus Fusion Peptide Promotes Hemifusion Formation by Disordering the Interfacial Region of the Membrane.

J Membr Biol

January 2025

School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768 109, India.

Membrane fusion is the first step in the infection process of the enveloped viruses. Enveloped viruses fuse either at the cell surface or enter the cell through endocytosis and transfer their internal genetic materials by fusing with the endosomal membrane at acidic pH. In this work, we have evaluated the effect of the Dengue virus fusion peptide (DENV FP) on the polyethylene glycol (PEG)-mediated lipid mixing of vesicles (hemifusion formation) at pH 5 and pH 7.

View Article and Find Full Text PDF

Globally, multiple trials have successfully demonstrated the effectiveness of novel tools, such as the sterile and incompatible insect techniques, in suppressing Aedes aegypti populations. However, there is concern that Aedes albopictus, another arbovirus-competent vector, may occupy the niches vacated by Ae. aegypti in areas where these species occur in sympatry.

View Article and Find Full Text PDF

Dengue remains the most rapidly advancing vector-borne disease in the world, and while the disease burden is predominantly in low-to-middle-income countries, the association with poverty remains in question. Consequently, a study was undertaken to evaluate the prevalence of anti-dengue antibodies among individuals residing in the People's Housing Program (PPR), a government-sponsored low-cost housing initiative targeting low-income earners. This type of public housing often faces challenges, including substandard housing facilities.

View Article and Find Full Text PDF

Background: The interactions between virus and the host immune response are nuanced and intricate. The cytokine response arguably plays a central role in dictating the outcome of virus infection, balancing inflammation and healing, which is crucial to resolving infection without destructive immunopathologies.

Summary: Early innate immune responses are key to the generation of a beneficial or detrimental immune response.

View Article and Find Full Text PDF

The SARS-CoV-2 pandemic has highlighted the need for society, as a whole, to be prepared against potential pandemics caused by a variety of different viral families of concern. Here, we describe a roadmap towards the identification and validation of conserved T cell epitope regions from Viral Families of Pandemic Potential (VFPP). For each viral family, we select a prototype virus, the sequence of which could be utilized in epitope identification screens.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!