Expression profile and differential regulation of the Human I-mfa domain-Containing protein (HIC) gene in immune cells.

Immunol Lett

School of Medicine and Medical Science, Centre for Research in Infectious Diseases, University College Dublin, Belfield, Dublin 4, Ireland.

Published: April 2009

The Human I-mfa domain-Containing protein, HIC, is a 246 amino acid protein that functions as a transcriptional regulator. Although the precise function of HIC remains to be clarified, the association of the HIC gene locus with myeloid neoplasms, its interactions with lymphotropic viruses such as EBV, HIV-1 and HTLV-1 and its expression in immune tissues suggest that HIC might have a modulatory role in immune cells. To further characterise the HIC functional relationship with the immune system, we sought to analyse the HIC gene expression profile in immune cells and to determine if immunomodulatory cytokines, such as interleukin (IL)-2, could regulate the expression of HIC mRNA. Relative quantitative real-time RT-PCR revealed that HIC mRNA is highly expressed in PBMCs and in various hematopoietic cell lines. The immunomodulatory cytokine IL-2 up-regulated HIC gene expression in PBMCs, CEM, MT-2 and U937 but markedly reduced HIC gene expression in Raji. Addition of cycloheximide indicated that the IL-2 effects were independent of de novo protein synthesis and that the HIC gene is a direct target of IL-2. Two cell lines (Jurkat and BJAB) displayed a distinct loss in HIC gene expression. However, when these cell lines were subjected to a combination of DNA methyltransferase and histone-deacetylase inhibitors, (5-aza-2-deoxycytidine and trichostatin A, respectively), HIC expression was de-repressed, indicating possible epigenetic control of HIC expression. Overall, our study describes that the immune expression of HIC is cell-specific, dynamic, and identifies the HIC gene as an IL-2 responsive gene. Furthermore, our de-repression studies support the hypothesis that HIC might represent a candidate tumor suppressor gene. Overall, this report provides new insights for a putative role of HIC in the modulation of immune and inflammatory responses and/or hematological malignancies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.imlet.2009.03.010DOI Listing

Publication Analysis

Top Keywords

hic gene
32
hic
19
gene expression
16
immune cells
12
cell lines
12
expression
10
gene
10
expression profile
8
human i-mfa
8
i-mfa domain-containing
8

Similar Publications

Genome organization recapitulates function, yet ciliates like possess highly-specialized germline genomes, which are largely transcriptionally silent. During post-zygotic development, 's germline undergoes large-scale genome editing, rearranging precursor genome elements into a transcriptionally-active genome with thousands of gene-sized nanochromosomes. Transgenerationally-inherited RNAs, derived from the parental somatic genome, program the retention and reordering of germline fragments.

View Article and Find Full Text PDF

Genome-wide association studies (GWAS) of melanoma risk have identified 68 independent signals at 54 loci. For most loci, specific functional variants and their respective target genes remain to be established. Capture-HiC is an assay that links fine-mapped risk variants to candidate target genes by comprehensively mapping cell-type specific chromatin interactions.

View Article and Find Full Text PDF

Comparative genomic analysis of Fusarium oxysporum f. sp. lycopersici reveals telomeric duplications of a lineage-specific region carrying SIX8 and PSL1 and genome-wide expansion of Foxy transposable elements.

Int J Biol Macromol

January 2025

State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China; Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, College of Horticulture, Hebei Agricultural University, Baoding 071000, China; Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia. Electronic address:

Fusarium oxysporum f. sp. lycopersici (Fol), the causal agent of tomato wilt disease, is a soil-borne, vascular-colonizing fungal pathogen that severely impacts tomato production in most growing regions worldwide.

View Article and Find Full Text PDF

Chromosome-level genome assembly, annotation, and population genomic resource of argali (Ovis ammon).

Sci Data

January 2025

Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.

Argali stands as the largest species among wild sheep in Central and East Asia, with a concerning rate of decline estimated at 30%. The intraspecific taxonomy of argali remains contentious due to limited genomic data and unclear geographic separation. In this study, we constructed a chromosome-level genome assembly and annotation for the Tibetan argali (O.

View Article and Find Full Text PDF

Chromosome-scale genome assembly of three-spotted seahorse (Hippocampus trimaculatus) with a unique karyotype.

Sci Data

January 2025

Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518057, China.

Three-spotted seahorse (Hippocampi trimaculata) is a unique fish with important economic and medicinal values, and its total chromosome number is potentially quite different from other seahorse species. Herein, we constructed a chromosome-level genome assembly for this special seahorse by integration of MGI short-read, PacBio HiFi long-read and Hi-C sequencing techniques. A 416.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!