Although enhanced green fluorescent protein (EGFP) is widely used as a molecular tag in cell biology, it has become evident that immunogenicity of transgenic or transduced EGFP is important when it applies to transplantation model. Indeed, it appears that applications of EGFP-expressing cells, tissues and organ transplantation are limited in vivo due to the ultimate rejection of the graft. Nevertheless, the immunological behavior of transduced EGFP, in particular, as a minor histocompatibility antigen is not fully understood. Thus employing two strains of EGFP transgenic (Tg) rats generated by the same vector construct, e.g., EGFP-F344 Tg (RT11) and EGFP-DA Tg (RT1a), and its F(1) hybrid with a non-transgenic rat, behavior of EGFP-transgenic antigen(s) was examined by in vivo assays, such as EGFP-transgenic test skin grafts or regulation of EGFP-transgenic lymphocytes. In the latter system, EGFP-specific, T-cell-mediated immune regulation of local graft-versus-host reaction (GvHR) was further investigated with a special reference of in vivo cytotoxic assay, i.e., elimination of colored lymphocytes with either EGFP-incompatible or CFSE-labeled sex-mismatched lymphocytes. We provide evidence that differential immunological behavior of EGFP-transgenic minor histocompatibility antigen was observed in vivo. Thus, immune responses to EGFP-minor histocompatibility antigen(s) were not always accompanied with the rejection of test skin isograft. It only becomes apparent for EGFP-specific elimination and suppression of both systemic and local GvHR induced by EGFP-transgenic T lymphocytes after EGFP-specific sensitization. However, this was not the case where test skin isografting was applied even under extensive sensitization protocols. These findings demonstrate that minor histocompatibility antigen specific immune elimination of EGFP-transgenic T lymphocytes or regulation of local GvHR provides more sensitive and better immune assay systems in vivo than classical test skin isograft systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.imlet.2009.02.004DOI Listing

Publication Analysis

Top Keywords

minor histocompatibility
16
histocompatibility antigen
16
test skin
16
immunological behavior
12
skin isograft
12
regulation local
12
egfp-transgenic lymphocytes
12
enhanced green
8
green fluorescent
8
fluorescent protein
8

Similar Publications

MTHFD2 promotes breast cancer cell proliferation through IFRD1 RNA m6A methylation-mediated HDAC3/p53/mTOR pathway.

Neoplasma

December 2024

Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.

MTHFD2 is highly overexpressed in breast cancer tissues, indicating that it might be used as a target in breast cancer treatment. This study aims to determine the role of MTHFD2 in breast cancer cell proliferation and the molecular pathways involved. In order to investigate MTHFD2 gene expression and its downstream pathways in breast cancer, we started our inquiry with a bioinformatics analysis.

View Article and Find Full Text PDF

Recombinant adeno-associated virus (rAAV) has emerged as one of the best gene delivery vectors for human gene therapy in vivo. However, the clinical efficacy of rAAV gene therapy is often hindered by the host immune response against its transgene products. Endoplasmic reticulum aminopeptidase 1 (ERAP1) is specialised to process peptides presented by class I molecules of major histocompatibility complex.

View Article and Find Full Text PDF

Cigarette smoke components modulate the MR1-MAIT axis.

J Exp Med

February 2025

Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Australia.

Tobacco smoking is prevalent across the world and causes numerous diseases. Cigarette smoke (CS) compromises immunity, yet little is known of the components of CS that impact T cell function. MR1 is a ubiquitous molecule that presents bacterial metabolites to MAIT cells, which are highly abundant in the lungs.

View Article and Find Full Text PDF

T cell-based immunotherapies targeting antigens on tumor cells have shown efficacy as anti-cancer treatments. While neoantigens are created by somatic mutations acquired during tumorigenesis, allogeneic stem cell transplantation as treatment for hematological malignancies exploits minor histocompatibility antigens encoded by genetic differences between patients and donors. Screening methods to predict neoantigens and minor histocompatibility antigens typically consider only conventional antigens created by nonsynonymous mutations or polymorphisms coding for amino acid changes in canonical open reading frames (ORFs).

View Article and Find Full Text PDF

CAG/CTG repeats are prone to expansion, causing several inherited human diseases. The initiating sources of DNA damage which lead to inaccurate repair of the repeat tract to cause expansions are not fully understood. Expansion-prone CAG/CTG repeats are actively transcribed and prone to forming stable R-loops with hairpin structures forming on the displaced single-stranded DNA (S-loops).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!