We have recently described the expression and intracellular localization of ER alpha in murine C2C12 cells and skeletal muscle tissue. In separate studies, a protective role of 17beta-estradiol against apoptosis exerted mainly at the mitochondrial level was also shown in the C2C12 muscle cell line. However, this functional evidence was in accordance with the participation of ER beta. We have then here investigated the expression and subcellular distribution of native ER beta in similar skeletal muscle cultured cells and tissue developed in vivo. ER beta was detected by immunoblotting using specific antibodies and ligand blot analysis after subcellular fractionation. Immunolocalization was confirmed using conventional and confocal microscopy. ER beta was found to a great extent in mitochondria and in lower amounts in the cytosolic fraction, differently to ER alpha which localizes in microsomes, cytosol, mitochondria, and also in the nucleus of muscle tissue. ER beta expression was also demonstrated by RT-PCR. Finally, the mitochondrial localization of native ER beta in C2C12 muscle cells was corroborated after transient transfection with specific ER beta siRNAs. These data raise the possibility that the antiapoptotic action of 17beta-estradiol in muscle cells may be related in part to a direct action of the hormone on mitochondria through ER beta.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.steroids.2009.01.005 | DOI Listing |
Arch Physiol Biochem
January 2025
Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway.
Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) plays a crucial role in regulation of metabolic homeostasis. To understand the role of the catalytic α2 subunit of AMPK in skeletal muscle energy metabolism, myotube cultures were established from and mice. Myotubes from mice had lower basal oleic acid and glucose oxidation compared to myotubes from mice.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Minnesota Duluth, Duluth, MN, USA.
Background: When designing cutting-edge technology, particularly humanoid social robots, an essential consideration is understanding how individuals naturally engage in social interactions, shaping their relationships with technology and media.
Method: In pursuit of insights into the application of natural human behavior, specifically reciprocation, in human-robot interaction, an experiment involving 72 participants, involving facial electromyography, focusing on zygomatic and corrugator muscles, served as a tool to gauge users' emotional valence during interactions. The study assessed users' willingness to reciprocate a favor and measured compliance by tracking the number of raffle tickets purchased by users at the robot's request.
FASEB Bioadv
January 2025
Department of Chemistry, Graduate School of Science Chiba University Chiba Japan.
Diacylglycerol kinase δ (DGKδ) phosphorylates diacylglycerol to produce phosphatidic acid. Previously, we demonstrated that down-regulation of DGKδ suppresses the myogenic differentiation of C2C12 myoblasts. However, the myogenic roles of DGKδ in vivo remain unclear.
View Article and Find Full Text PDFDiscov Med (Cham)
January 2025
Institute of Biomedical Engineering, University of Toronto, Toronto, ON Canada.
Background: Microvascular dysfunction (MVD) is a recognized sign of disease in heart failure progression. Intact blood vessels exhibit abnormal vasoreactivity in early stage, subsequently deteriorating to rarefaction and reduced perfusion. In managing heart failure with preserved ejection fraction (HFpEF), earlier diagnosis is key to improving management.
View Article and Find Full Text PDFBiomed Rep
March 2025
Department of Physiology, Faculty of Medicine, Maranatha Christian University, Bandung, West Java 40164, Indonesia.
Dual oxidases (DUOX) are enzymes that have the main function in producing reactive oxygen species (ROS) in various tissues. DUOX also play an important role in the synthesis of HO, which is essential for the production of thyroid hormone. Thyroid hormones can influence the process of muscle development through direct stimulation of ROS, 5' AMP-activated protein kinase (AMPK) and mTOR and indirect effect autophagy and the insulin-like growth factor 1 (IGF-1) pathway.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!