Purpose: We assessed response and functional connectivity patterns of different parts of the visual and motor cortices during visuo-motor integration with particular focus on the intraparietal sulcus (IPS).
Methods: Brain activity was measured during a visuo-motor task in 14 subjects using event-related fMRI. During central fixation, a blue or red target embedded in an array of grey distractors was presented for 250 ms in either the left or right visual hemifield. After a delay, the subjects were prompted to press the upper or lower response button for targets in the upper and lower hemifield with the left or right thumb for blue and red targets, respectively. The fMRI responses were evaluated for different regions of interests (ROIs), and the functional connectivity of the IPS subregions with these ROIs was quantified.
Results: In an anterior IPS region and a region in the anterior premotor cortex, presumably the frontal eye fields (FEF), visually driven responses were dominant contralateral to both visual stimulus and effector. Thus, the anterior IPS combines, in contrast to the posterior IPS and the occipital cortex, response properties of cortex activated by visual input and by motor output. Further, functional connectivity with the motor areas was stronger for the anterior than for the posterior IPS regions.
Discussion: Anterior IPS and FEF appear to be of major relevance for relating visual and effector information during visuo-motor integration. Patient studies with the devised paradigm are expected to uncover the impact of pathophysiologies and plasticity on the observed cortical lateralisation patterns.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuropsychologia.2009.01.027 | DOI Listing |
Acta Neuropathol Commun
January 2025
Department of Physiology and Pharmacology, Sapienza University of Rome, 00185, Rome, Italy.
The generation of retinal models from human induced pluripotent stem cells holds significant potential for advancing our understanding of retinal development, neurodegeneration, and the in vitro modeling of neurodegenerative disorders. The retina, as an accessible part of the central nervous system, offers a unique window into these processes, making it invaluable for both study and early diagnosis. This study investigates the impact of the Frontotemporal Dementia-linked IVS 10 + 16 MAPT mutation on retinal development and function using 2D and 3D retinal models derived from human induced pluripotent stem cells.
View Article and Find Full Text PDFJ Neurosci
January 2025
The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, 52900, Israel
Time persistence is a fundamental property of many complex physical and biological systems; thus understanding the phenomenon in the brain is of high importance. Time persistence has been explored at the level of stand-alone neural time-series, but since the brain functions as an interconnected network, it is essential to examine time persistence at the network level. Changes in resting-state networks have been previously investigated using both dynamic (i.
View Article and Find Full Text PDFNeuroscience
January 2025
Kansai University of Health Sciences, Faculty of Health Sciences, Department of Physical Therapy, 2-11-1 Wakaba Sennangun Kumatori, Osaka 590-0482, Japan; Graduate School of Kansai University of Health Sciences, Graduate School of Health Sciences, 2-11-1 Wakaba Sennangun Kumatori, Osaka 590-0482, Japan.
Elderly adults may have poorer recall ability than young adults and may not fully enjoy the effects of motor imagery. To understand the age bias of the effect of motor imagery on hand dexterity, we evaluated brain activation and spinal motor nerve excitability. Brain activation was evaluated from changes in oxygenated hemoglobin concentration, while spinal motor nerve excitability was evaluated from F-waves in eight young (mean age 21.
View Article and Find Full Text PDFBrain Stimul
January 2025
Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada. Electronic address:
Plant Cell
December 2024
Department of Plant and Microbial Biology, University of Minnesota at Twin Cities, Saint Paul, MN 55108, USA.
In Arabidopsis (Arabidopsis thaliana), light and circadian clock signaling converge on PHYTOCHROME-INTERACTING FACTORS (PIFs) 4 and 5 to produce a daily rhythm of hypocotyl elongation. PIF4 and PIF5 expression is repressed at dusk by the evening complex (EC), consisting of EARLY FLOWERING3 (ELF3), ELF4, and LUX ARRHYTHMO (LUX). Here, we report that ELF3 recruits the JUMONJI (JMJ) H3K4me3 demethylases JMJ17 and JMJ18 to the PIF4 and PIF5 loci in the evening to remove their H3K4me3 marks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!