Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Microtubules are a proven target for anticancer drug development because they are critical for mitotic spindle formation and the separation of chromosomes at mitosis. We here report a novel synthetic microtubule inhibitor 7-diethylamino-3(2'-benzoxazolyl)-coumarin (DBC). DBC causes destabilization of microtubules, leading to a cell cycle arrest at G(2)/M stage. In addition, human cancer cells are more sensitive to DBC (IC(50) 44.8-475.2nM) than human normal fibroblast (IC(50) 7.9microM), and DBC induces apoptotic cell death of cancer cells. Furthermore, our data show that DBC is a poor substrate of drug efflux pumps and effective against multidrug resistant (MDR) cancer cells. Taken together, these results describe a novel pharmacological property of DBC as a microtubule inhibitor, which may make it an attractive new agent for treatment of MDR cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bcp.2009.03.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!