Carnivorous plants use animals as fertiliser substitutes which allow them to survive on nutrient deficient soils. Most research concentrated on the uptake of the prey's nitrogen and phosphorus; only little is known on the utilisation of other elements. We studied the uptake of three essential nutrients, potassium, iron and manganese, in three species of carnivorous pitcher plants (Cephalotus follicularis LaBilladiere, Sarracenia purpureaL., Heliamphora nutans Bentham). Using relatively short-lived and gamma-emitting radiotracers, we significantly improved the sensitivity compared to conventional protocols and gained the following results. We demonstrated the uptake of trace elements like iron and manganese. In addition, we found direct evidence for the uptake of potassium into the pitcher tissue. Potassium and manganese were absorbed to virtually 100% if offered in physiological concentrations or below in Cephalotus. Analysis of pitcher fluid collected in the natural habitat showed that uptake was performed here as efficiently as in the laboratory. The absorption of nutrients is an active process depending on living glandular cells in the pitcher epidermis and can be inhibited by azide. Unphysiologically high amounts of nutrients were taken up for a short time, but after a few hours the absorbing cells were damaged, and uptake stopped. Absorption rates of pitcher leaves from plants under controlled conditions varied highly, indicating that each trap is functionally independent. The comparison of minerals in typical prey with the plants' tissues showed that a complete coverage of the plants' needs by prey capture is improbable.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.apradiso.2009.04.006DOI Listing

Publication Analysis

Top Keywords

iron manganese
12
carnivorous plants
8
uptake potassium
8
potassium iron
8
carnivorous pitcher
8
pitcher plants
8
uptake
7
pitcher
6
plants
5
expanding menu
4

Similar Publications

Metal ions are indispensable to life, as they can serve as essential enzyme cofactors to drive fundamental biochemical reactions, yet paradoxically, excess is highly toxic. Higher-order cells have evolved functionally distinct organelles that separate and coordinate sophisticated biochemical processes to maintain cellular homeostasis upon metal ion stimuli. Here, we uncover the remodeling of subcellular architecture and organellar interactome in yeast initiated by several metal ion stimulations, relying on near-native three-dimensional imaging, cryo-soft X-ray tomography.

View Article and Find Full Text PDF

Studies on the nutritional strength of various hyacinth bean varieties for their potential utilization as promising legume.

J Food Sci Technol

January 2025

Grain Science and Technology Division, Defence Food Research Laboratory, Mysore, Karnataka 570011 India.

This study aimed to compare thirteen different varieties of hyacinth beans analyzedfor their nutritional and antinutritional constituents. The study classified HA-3, HA-4, and Kadale Avare as Lignosus varieties, while the remaining varieties Arka, Pusa, CO, and NS, were classified as Typicus. The protein content ranged from 19.

View Article and Find Full Text PDF

Fluorescent iron nanoclusters are emerging fluorescent nanomaterials. Herein, we synthesized hemoglobin-coated iron nanoclusters (Hb-Fe NCs) with a significant fluorescence emission peak at 615 nm and investigated the inner-filter effect of fluorescence induced by a manganese dioxide nanosheet (MnO NS). The fluorescence quenching of Hb-Fe NCs by a MnO NS can be significantly reversed by the addition of ascorbic acid.

View Article and Find Full Text PDF

The aim of this study was to assess the effect of selected plant additives on changes in the content of fatty acids, lipid quality indicators and mineral composition of yogurts produced from cow's milk. The analysis included natural yogurts and yogurts enriched with 10% of chia seeds, hulled hemp seeds, quinoa seeds and oat bran. The fatty acid composition, the content of lipid quality indicators and the content of mineral components was varied in all analyzed yogurts.

View Article and Find Full Text PDF

The mechanical properties of a final product are directly influenced by the solidification process, chemical composition heterogeneity, and the thermal variables during solidification. This study aims to analyze the influence of solidification thermal variables on the microstructure, hardness, and phase distribution of the CuMn11Al8Fe3Ni3. The alloy was directionally and upward solidified from a temperature of 1250 °C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!