Sex-specific effects of fasting on urocortin 1, cocaine- and amphetamine-regulated transcript peptide and nesfatin-1 expression in the rat Edinger-Westphal nucleus.

Neuroscience

Department of Cellular Animal Physiology, Faculty of Science, EURON, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.

Published: September 2009

Leptin is critical for normal food intake and energy metabolism. While leptin receptor (ObR) function has been well studied in hypothalamic feeding circuitries, the functional relevance of ObR in extrahypothalamic areas is largely unknown. Central regulatory pathways involved in food intake utilize various neuropeptides, such as urocortin 1 (Ucn1), cocaine- and amphetamine-regulated transcript peptide (CART) and nesfatin-1. Ucn1 is most abundantly expressed in the non-preganglionic Edinger-Westphal nucleus (npEW). In addition to Ucn1, other satiety signals, such as CART and nesfatin-1, are highly expressed in neurons of the npEW. Using immunocytochemistry and reverse transcriptase polymerase chain reaction (RT-PCR), we here show the presence of short and long forms of ObR in the rat npEW. Then, we tested our hypothesis that a change in plasma leptin will modulate the activity of npEW neurons containing Ucn1, CART and nesfatin-1. First, by double-labeling immunocytochemistry, we observed that almost all npEW neurons colocalizing Ucn1, CART and nesfatin-1 also contain ObR. Fasting rats for two days caused a marked body weight loss and reduced leptin plasma level in both genders. Ucn1 mRNA and CART mRNA were upregulated after fasting in males (3.3 and 2.4 times, respectively; P<0.05) but not in females. However, their peptide levels were not significantly changed. The peptide level and mRNA of nesfatin-1 were unaffected by fasting. We conclude that npEW-neurons containing Ucn1, CART and nesfatin-1 co-express ObR, and may be involved in leptin-mediated feeding control in male rats only.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2009.05.003DOI Listing

Publication Analysis

Top Keywords

cart nesfatin-1
16
cocaine- amphetamine-regulated
8
amphetamine-regulated transcript
8
transcript peptide
8
edinger-westphal nucleus
8
food intake
8
npew neurons
8
ucn1 cart
8
ucn1
6
nesfatin-1
5

Similar Publications

Study Objectives: The brainstem contains several neuronal populations, heterogeneous in terms of neurotransmitter/neuropeptide content, which are important for controlling various aspects of the rapid eye movement (REM) phase of sleep. Among these populations are the Calbindin (Calb)-immunoreactive NPCalb neurons, located in the Nucleus papilio, within the dorsal paragigantocellular nucleus (DPGi), and recently shown to control eye movement during the REM phase of sleep.

Methods: We performed in-depth data mining of the in situ hybridization data collected at the Allen Brain Atlas, in order to identify potentially interesting genes expressed in this brainstem nucleus.

View Article and Find Full Text PDF

Melanin-concentrating hormone neurons promote rapid eye movement sleep independent of glutamate release.

Brain Struct Funct

January 2019

Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, 3 Blackfan Circle, Center for Life Science # 717, Boston, MA, 02215, USA.

Neurons containing melanin-concentrating hormone (MCH) in the posterior lateral hypothalamus play an integral role in rapid eye movement sleep (REMs) regulation. As MCH neurons also contain a variety of other neuropeptides [e.g.

View Article and Find Full Text PDF

Nesfatin-1 is an 82-amino acid protein derived from nucleobindin 2 (NUCB2), which could inhibit food intake in fish and mammals. However, the neuroendocrine mechanism of nesfatin-1 in animal appetite regulation is unclear. To explore the feeding mechanism of nesfatin-1 in Siberian sturgeon (Acipenser baerii), intraperitoneal injections of nesfatin-1 and sulfated cholecystokinin octapeptide (CCK8), Lorglumide (CCK1R selective antagonist), or LY 225,910 (CCK2R selective antagonist) were performed.

View Article and Find Full Text PDF

Nesfatin-1 Regulates Feeding, Glucosensing and Lipid Metabolism in Rainbow Trout.

Front Endocrinol (Lausanne)

August 2018

Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.

Nesfatin-1 is an 82 amino acid peptide that has been involved in a wide variety of physiological functions in both mammals and fish. This study aimed to elucidate the role of nesfatin-1 on rainbow trout food intake, and its putative effects on glucose and fatty acid sensing systems. Intracerebroventricular administration of 25 ng/g nesfatin-1 resulted in a significant inhibition of appetite, likely mediated by the activation of central POMC and CART.

View Article and Find Full Text PDF

The inhibitory effect of NUCB2/nesfatin-1 on appetite regulation of Siberian sturgeon (Acipenser baerii Brandt).

Horm Behav

July 2018

Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China. Electronic address:

Since NUCB2 was discovered, the information about NUCB2/nesfatin-1 in appetite regulation in both mammals and teleost has been still limited. The present study aims to determine the effects of nesfatin-1 on food intake and to explore the appetite mechanism in Siberian sturgeon. In this study, nucb2 cDNA sequence of 1571 bp was obtained, and the mRNA expression of nucb2 was abundant in brain and liver.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!